| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2914 elpwi 3614 elsni 3640 elpr2 3644 elpri 3645 eltpi 3669 snssi 3766 prssi 3780 eloni 4410 limuni2 4432 elxpi 4679 releldmb 4903 relelrnb 4904 elrnmpt2d 4921 elrelimasn 5035 funeu 5283 fneu 5362 fvelima 5612 eloprabi 6254 fo2ndf 6285 tfrlem9 6377 ecexr 6597 elqsi 6646 qsel 6671 ecopovsym 6690 ecopovsymg 6693 elpmi 6726 elmapi 6729 pmsspw 6742 brdomi 6808 en1uniel 6863 mapdom1g 6908 dif1en 6940 enomnilem 7204 omnimkv 7222 mkvprop 7224 fodjumkvlemres 7225 enmkvlem 7227 enwomnilem 7235 ltrnqi 7488 peano2nnnn 7920 peano2nn 9002 eliooord 10003 fzrev3i 10163 elfzole1 10231 elfzolt2 10232 bcp1nk 10854 rere 11030 climcl 11447 climcau 11512 fprodcnv 11790 isstruct2im 12688 restsspw 12920 mgmcl 13002 submss 13108 subm0cl 13110 submcl 13111 submmnd 13112 subgsubm 13326 opprnzr 13742 opprdomn 13831 zrhval 14173 istopfin 14236 uniopn 14237 iunopn 14238 inopn 14239 eltpsg 14276 basis1 14283 basis2 14284 eltg4i 14291 lmff 14485 psmetf 14561 psmet0 14563 psmettri2 14564 metflem 14585 xmetf 14586 xmeteq0 14595 xmettri2 14597 cncff 14813 cncfi 14814 limcresi 14902 dvcnp2cntop 14935 sinq34lt0t 15067 lgsdir2lem2 15270 2sqlem9 15365 |
| Copyright terms: Public domain | W3C validator |