| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2914 elpwi 3615 elsni 3641 elpr2 3645 elpri 3646 eltpi 3670 snssi 3767 prssi 3781 eloni 4411 limuni2 4433 elxpi 4680 releldmb 4904 relelrnb 4905 elrnmpt2d 4922 elrelimasn 5036 funeu 5284 fneu 5363 fvelima 5613 eloprabi 6256 fo2ndf 6287 tfrlem9 6379 ecexr 6599 elqsi 6648 qsel 6673 ecopovsym 6692 ecopovsymg 6695 elpmi 6728 elmapi 6731 pmsspw 6744 brdomi 6810 en1uniel 6865 mapdom1g 6910 dif1en 6942 enomnilem 7206 omnimkv 7224 mkvprop 7226 fodjumkvlemres 7227 enmkvlem 7229 enwomnilem 7237 ltrnqi 7491 peano2nnnn 7923 peano2nn 9005 eliooord 10006 fzrev3i 10166 elfzole1 10234 elfzolt2 10235 bcp1nk 10857 rere 11033 climcl 11450 climcau 11515 fprodcnv 11793 isstruct2im 12699 restsspw 12937 mgmcl 13028 submss 13134 subm0cl 13136 submcl 13137 submmnd 13138 subgsubm 13352 opprnzr 13768 opprdomn 13857 zrhval 14199 istopfin 14262 uniopn 14263 iunopn 14264 inopn 14265 eltpsg 14302 basis1 14309 basis2 14310 eltg4i 14317 lmff 14511 psmetf 14587 psmet0 14589 psmettri2 14590 metflem 14611 xmetf 14612 xmeteq0 14621 xmettri2 14623 cncff 14839 cncfi 14840 limcresi 14928 dvcnp2cntop 14961 sinq34lt0t 15093 lgsdir2lem2 15296 2sqlem9 15391 |
| Copyright terms: Public domain | W3C validator |