| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 706 elab3gf 2930 elpwi 3635 elsni 3661 elpr2 3665 elpri 3666 eltpi 3690 snssi 3788 prssi 3802 eloni 4440 limuni2 4462 elxpi 4709 releldmb 4934 relelrnb 4935 elrnmpt2d 4952 elrelimasn 5067 funeu 5315 fneu 5399 fvelima 5653 eloprabi 6305 fo2ndf 6336 tfrlem9 6428 ecexr 6648 elqsi 6697 qsel 6722 ecopovsym 6741 ecopovsymg 6744 elpmi 6777 elmapi 6780 pmsspw 6793 brdomi 6861 en1uniel 6919 mapdom1g 6969 dif1en 7002 enomnilem 7266 omnimkv 7284 mkvprop 7286 fodjumkvlemres 7287 enmkvlem 7289 enwomnilem 7297 ltrnqi 7569 peano2nnnn 8001 peano2nn 9083 eliooord 10085 fzrev3i 10245 elfzole1 10313 elfzolt2 10314 bcp1nk 10944 rere 11291 climcl 11708 climcau 11773 fprodcnv 12051 isstruct2im 12957 restsspw 13196 mgmcl 13306 submss 13423 subm0cl 13425 submcl 13426 submmnd 13427 subgsubm 13647 opprnzr 14063 opprdomn 14152 zrhval 14494 istopfin 14587 uniopn 14588 iunopn 14589 inopn 14590 eltpsg 14627 basis1 14634 basis2 14635 eltg4i 14642 lmff 14836 psmetf 14912 psmet0 14914 psmettri2 14915 metflem 14936 xmetf 14937 xmeteq0 14946 xmettri2 14948 cncff 15164 cncfi 15165 limcresi 15253 dvcnp2cntop 15286 sinq34lt0t 15418 lgsdir2lem2 15621 2sqlem9 15716 uhgrfm 15784 ushgrfm 15785 upgrfen 15808 umgrfen 15818 |
| Copyright terms: Public domain | W3C validator |