| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 706 elab3gf 2923 elpwi 3625 elsni 3651 elpr2 3655 elpri 3656 eltpi 3680 snssi 3777 prssi 3791 eloni 4422 limuni2 4444 elxpi 4691 releldmb 4915 relelrnb 4916 elrnmpt2d 4933 elrelimasn 5048 funeu 5296 fneu 5380 fvelima 5630 eloprabi 6282 fo2ndf 6313 tfrlem9 6405 ecexr 6625 elqsi 6674 qsel 6699 ecopovsym 6718 ecopovsymg 6721 elpmi 6754 elmapi 6757 pmsspw 6770 brdomi 6838 en1uniel 6896 mapdom1g 6944 dif1en 6976 enomnilem 7240 omnimkv 7258 mkvprop 7260 fodjumkvlemres 7261 enmkvlem 7263 enwomnilem 7271 ltrnqi 7534 peano2nnnn 7966 peano2nn 9048 eliooord 10050 fzrev3i 10210 elfzole1 10278 elfzolt2 10279 bcp1nk 10907 rere 11176 climcl 11593 climcau 11658 fprodcnv 11936 isstruct2im 12842 restsspw 13081 mgmcl 13191 submss 13308 subm0cl 13310 submcl 13311 submmnd 13312 subgsubm 13532 opprnzr 13948 opprdomn 14037 zrhval 14379 istopfin 14472 uniopn 14473 iunopn 14474 inopn 14475 eltpsg 14512 basis1 14519 basis2 14520 eltg4i 14527 lmff 14721 psmetf 14797 psmet0 14799 psmettri2 14800 metflem 14821 xmetf 14822 xmeteq0 14831 xmettri2 14833 cncff 15049 cncfi 15050 limcresi 15138 dvcnp2cntop 15171 sinq34lt0t 15303 lgsdir2lem2 15506 2sqlem9 15601 |
| Copyright terms: Public domain | W3C validator |