| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 706 elab3gf 2923 elpwi 3625 elsni 3651 elpr2 3655 elpri 3656 eltpi 3680 snssi 3777 prssi 3791 eloni 4423 limuni2 4445 elxpi 4692 releldmb 4916 relelrnb 4917 elrnmpt2d 4934 elrelimasn 5049 funeu 5297 fneu 5381 fvelima 5632 eloprabi 6284 fo2ndf 6315 tfrlem9 6407 ecexr 6627 elqsi 6676 qsel 6701 ecopovsym 6720 ecopovsymg 6723 elpmi 6756 elmapi 6759 pmsspw 6772 brdomi 6840 en1uniel 6898 mapdom1g 6946 dif1en 6978 enomnilem 7242 omnimkv 7260 mkvprop 7262 fodjumkvlemres 7263 enmkvlem 7265 enwomnilem 7273 ltrnqi 7536 peano2nnnn 7968 peano2nn 9050 eliooord 10052 fzrev3i 10212 elfzole1 10280 elfzolt2 10281 bcp1nk 10909 rere 11209 climcl 11626 climcau 11691 fprodcnv 11969 isstruct2im 12875 restsspw 13114 mgmcl 13224 submss 13341 subm0cl 13343 submcl 13344 submmnd 13345 subgsubm 13565 opprnzr 13981 opprdomn 14070 zrhval 14412 istopfin 14505 uniopn 14506 iunopn 14507 inopn 14508 eltpsg 14545 basis1 14552 basis2 14553 eltg4i 14560 lmff 14754 psmetf 14830 psmet0 14832 psmettri2 14833 metflem 14854 xmetf 14855 xmeteq0 14864 xmettri2 14866 cncff 15082 cncfi 15083 limcresi 15171 dvcnp2cntop 15204 sinq34lt0t 15336 lgsdir2lem2 15539 2sqlem9 15634 |
| Copyright terms: Public domain | W3C validator |