Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ibi | Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 |
Ref | Expression |
---|---|
ibi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 | |
2 | 1 | biimpd 143 | . 2 |
3 | 2 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ibir 176 pm5.21nii 699 elab3gf 2880 elpwi 3573 elsni 3599 elpr2 3603 elpri 3604 eltpi 3628 snssi 3722 prssi 3736 eloni 4358 limuni2 4380 elxpi 4625 releldmb 4846 relelrnb 4847 elrnmpt2d 4864 funeu 5221 fneu 5300 fvelima 5546 eloprabi 6172 fo2ndf 6203 tfrlem9 6295 ecexr 6514 elqsi 6561 qsel 6586 ecopovsym 6605 ecopovsymg 6608 elpmi 6641 elmapi 6644 pmsspw 6657 brdomi 6723 en1uniel 6778 mapdom1g 6821 dif1en 6853 enomnilem 7110 omnimkv 7128 mkvprop 7130 fodjumkvlemres 7131 enmkvlem 7133 enwomnilem 7141 ltrnqi 7370 peano2nnnn 7802 peano2nn 8877 eliooord 9872 fzrev3i 10031 elfzole1 10098 elfzolt2 10099 bcp1nk 10683 rere 10816 climcl 11232 climcau 11297 fprodcnv 11575 isstruct2im 12413 restsspw 12576 mgmcl 12600 submss 12685 subm0cl 12687 submcl 12688 istopfin 12751 uniopn 12752 iunopn 12753 inopn 12754 eltpsg 12791 basis1 12798 basis2 12799 eltg4i 12808 lmff 13002 psmetf 13078 psmet0 13080 psmettri2 13081 metflem 13102 xmetf 13103 xmeteq0 13112 xmettri2 13114 cncff 13317 cncfi 13318 limcresi 13388 dvcnp2cntop 13416 sinq34lt0t 13505 lgsdir2lem2 13683 2sqlem9 13713 |
Copyright terms: Public domain | W3C validator |