| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 |
|
| Ref | Expression |
|---|---|
| ibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 |
. . 3
| |
| 2 | 1 | biimpd 144 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 709 elab3gf 2953 elpwi 3658 elsni 3684 elpr2 3688 elpri 3689 eltpi 3713 snssi 3812 prssi 3826 eloni 4466 limuni2 4488 elxpi 4735 releldmb 4961 relelrnb 4962 elrnmpt2d 4979 elrelimasn 5094 funeu 5343 fneu 5427 fvelima 5685 eloprabi 6342 fo2ndf 6373 tfrlem9 6465 ecexr 6685 elqsi 6734 qsel 6759 ecopovsym 6778 ecopovsymg 6781 elpmi 6814 elmapi 6817 pmsspw 6830 brdomi 6898 en1uniel 6956 mapdom1g 7008 dif1en 7041 enomnilem 7305 omnimkv 7323 mkvprop 7325 fodjumkvlemres 7326 enmkvlem 7328 enwomnilem 7336 ltrnqi 7608 peano2nnnn 8040 peano2nn 9122 eliooord 10124 fzrev3i 10284 elfzole1 10352 elfzolt2 10353 bcp1nk 10984 rere 11376 climcl 11793 climcau 11858 fprodcnv 12136 isstruct2im 13042 restsspw 13282 mgmcl 13392 submss 13509 subm0cl 13511 submcl 13512 submmnd 13513 subgsubm 13733 opprnzr 14150 opprdomn 14239 zrhval 14581 istopfin 14674 uniopn 14675 iunopn 14676 inopn 14677 eltpsg 14714 basis1 14721 basis2 14722 eltg4i 14729 lmff 14923 psmetf 14999 psmet0 15001 psmettri2 15002 metflem 15023 xmetf 15024 xmeteq0 15033 xmettri2 15035 cncff 15251 cncfi 15252 limcresi 15340 dvcnp2cntop 15373 sinq34lt0t 15505 lgsdir2lem2 15708 2sqlem9 15803 uhgrfm 15873 ushgrfm 15874 upgrfen 15897 umgrfen 15907 uspgrfen 15957 usgrfen 15958 wlkcprim 16061 |
| Copyright terms: Public domain | W3C validator |