ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis Unicode version

Theorem txdis 12917
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  =  ~P ( A  X.  B
) )

Proof of Theorem txdis
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 12725 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 distop 12725 . . . . 5  |-  ( B  e.  W  ->  ~P B  e.  Top )
3 unipw 4195 . . . . . . 7  |-  U. ~P A  =  A
43eqcomi 2169 . . . . . 6  |-  A  = 
U. ~P A
5 unipw 4195 . . . . . . 7  |-  U. ~P B  =  B
65eqcomi 2169 . . . . . 6  |-  B  = 
U. ~P B
74, 6txuni 12903 . . . . 5  |-  ( ( ~P A  e.  Top  /\ 
~P B  e.  Top )  ->  ( A  X.  B )  =  U. ( ~P A  tX  ~P B ) )
81, 2, 7syl2an 287 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  =  U. ( ~P A  tX  ~P B
) )
9 eqimss2 3197 . . . 4  |-  ( ( A  X.  B )  =  U. ( ~P A  tX  ~P B
)  ->  U. ( ~P A  tX  ~P B
)  C_  ( A  X.  B ) )
108, 9syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. ( ~P A  tX 
~P B )  C_  ( A  X.  B
) )
11 sspwuni 3950 . . 3  |-  ( ( ~P A  tX  ~P B )  C_  ~P ( A  X.  B
)  <->  U. ( ~P A  tX 
~P B )  C_  ( A  X.  B
) )
1210, 11sylibr 133 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  C_  ~P ( A  X.  B
) )
13 elelpwi 3571 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) )  ->  y  e.  ( A  X.  B ) )
1413adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  ( A  X.  B ) )
15 xp1st 6133 . . . . . . . 8  |-  ( y  e.  ( A  X.  B )  ->  ( 1st `  y )  e.  A )
16 snelpwi 4190 . . . . . . . 8  |-  ( ( 1st `  y )  e.  A  ->  { ( 1st `  y ) }  e.  ~P A
)
1714, 15, 163syl 17 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { ( 1st `  y ) }  e.  ~P A )
18 xp2nd 6134 . . . . . . . 8  |-  ( y  e.  ( A  X.  B )  ->  ( 2nd `  y )  e.  B )
19 snelpwi 4190 . . . . . . . 8  |-  ( ( 2nd `  y )  e.  B  ->  { ( 2nd `  y ) }  e.  ~P B
)
2014, 18, 193syl 17 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { ( 2nd `  y ) }  e.  ~P B )
21 vsnid 3608 . . . . . . . 8  |-  y  e. 
{ y }
22 1st2nd2 6143 . . . . . . . . . 10  |-  ( y  e.  ( A  X.  B )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2314, 22syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
2423sneqd 3589 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { y }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
2521, 24eleqtrid 2255 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
26 simprl 521 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  x
)
2723, 26eqeltrrd 2244 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  x
)
2827snssd 3718 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  C_  x
)
29 xpeq1 4618 . . . . . . . . . 10  |-  ( z  =  { ( 1st `  y ) }  ->  ( z  X.  w )  =  ( { ( 1st `  y ) }  X.  w ) )
3029eleq2d 2236 . . . . . . . . 9  |-  ( z  =  { ( 1st `  y ) }  ->  ( y  e.  ( z  X.  w )  <->  y  e.  ( { ( 1st `  y
) }  X.  w
) ) )
3129sseq1d 3171 . . . . . . . . 9  |-  ( z  =  { ( 1st `  y ) }  ->  ( ( z  X.  w
)  C_  x  <->  ( {
( 1st `  y
) }  X.  w
)  C_  x )
)
3230, 31anbi12d 465 . . . . . . . 8  |-  ( z  =  { ( 1st `  y ) }  ->  ( ( y  e.  ( z  X.  w )  /\  ( z  X.  w )  C_  x
)  <->  ( y  e.  ( { ( 1st `  y ) }  X.  w )  /\  ( { ( 1st `  y
) }  X.  w
)  C_  x )
) )
33 xpeq2 4619 . . . . . . . . . . 11  |-  ( w  =  { ( 2nd `  y ) }  ->  ( { ( 1st `  y
) }  X.  w
)  =  ( { ( 1st `  y
) }  X.  {
( 2nd `  y
) } ) )
34 1stexg 6135 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
3534elv 2730 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
36 2ndexg 6136 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
3736elv 2730 . . . . . . . . . . . 12  |-  ( 2nd `  y )  e.  _V
3835, 37xpsn 5661 . . . . . . . . . . 11  |-  ( { ( 1st `  y
) }  X.  {
( 2nd `  y
) } )  =  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }
3933, 38eqtrdi 2215 . . . . . . . . . 10  |-  ( w  =  { ( 2nd `  y ) }  ->  ( { ( 1st `  y
) }  X.  w
)  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
4039eleq2d 2236 . . . . . . . . 9  |-  ( w  =  { ( 2nd `  y ) }  ->  ( y  e.  ( { ( 1st `  y
) }  X.  w
)  <->  y  e.  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } ) )
4139sseq1d 3171 . . . . . . . . 9  |-  ( w  =  { ( 2nd `  y ) }  ->  ( ( { ( 1st `  y ) }  X.  w )  C_  x  <->  {
<. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) )
4240, 41anbi12d 465 . . . . . . . 8  |-  ( w  =  { ( 2nd `  y ) }  ->  ( ( y  e.  ( { ( 1st `  y
) }  X.  w
)  /\  ( {
( 1st `  y
) }  X.  w
)  C_  x )  <->  ( y  e.  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  /\  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) ) )
4332, 42rspc2ev 2845 . . . . . . 7  |-  ( ( { ( 1st `  y
) }  e.  ~P A  /\  { ( 2nd `  y ) }  e.  ~P B  /\  (
y  e.  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  /\  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )
4417, 20, 25, 28, 43syl112anc 1232 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )
4544expr 373 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  y  e.  x )  ->  (
x  e.  ~P ( A  X.  B )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) ) )
4645ralrimdva 2546 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ~P ( A  X.  B
)  ->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
47 eltx 12899 . . . . 5  |-  ( ( ~P A  e.  Top  /\ 
~P B  e.  Top )  ->  ( x  e.  ( ~P A  tX  ~P B )  <->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
481, 2, 47syl2an 287 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ( ~P A  tX  ~P B )  <->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
4946, 48sylibrd 168 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ~P ( A  X.  B
)  ->  x  e.  ( ~P A  tX  ~P B ) ) )
5049ssrdv 3148 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  C_  ( ~P A  tX  ~P B
) )
5112, 50eqssd 3159 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  =  ~P ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   {csn 3576   <.cop 3579   U.cuni 3789    X. cxp 4602   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Topctop 12635    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-tx 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator