Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txdis | Unicode version |
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
txdis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 12725 | . . . . 5 | |
2 | distop 12725 | . . . . 5 | |
3 | unipw 4195 | . . . . . . 7 | |
4 | 3 | eqcomi 2169 | . . . . . 6 |
5 | unipw 4195 | . . . . . . 7 | |
6 | 5 | eqcomi 2169 | . . . . . 6 |
7 | 4, 6 | txuni 12903 | . . . . 5 |
8 | 1, 2, 7 | syl2an 287 | . . . 4 |
9 | eqimss2 3197 | . . . 4 | |
10 | 8, 9 | syl 14 | . . 3 |
11 | sspwuni 3950 | . . 3 | |
12 | 10, 11 | sylibr 133 | . 2 |
13 | elelpwi 3571 | . . . . . . . . 9 | |
14 | 13 | adantl 275 | . . . . . . . 8 |
15 | xp1st 6133 | . . . . . . . 8 | |
16 | snelpwi 4190 | . . . . . . . 8 | |
17 | 14, 15, 16 | 3syl 17 | . . . . . . 7 |
18 | xp2nd 6134 | . . . . . . . 8 | |
19 | snelpwi 4190 | . . . . . . . 8 | |
20 | 14, 18, 19 | 3syl 17 | . . . . . . 7 |
21 | vsnid 3608 | . . . . . . . 8 | |
22 | 1st2nd2 6143 | . . . . . . . . . 10 | |
23 | 14, 22 | syl 14 | . . . . . . . . 9 |
24 | 23 | sneqd 3589 | . . . . . . . 8 |
25 | 21, 24 | eleqtrid 2255 | . . . . . . 7 |
26 | simprl 521 | . . . . . . . . 9 | |
27 | 23, 26 | eqeltrrd 2244 | . . . . . . . 8 |
28 | 27 | snssd 3718 | . . . . . . 7 |
29 | xpeq1 4618 | . . . . . . . . . 10 | |
30 | 29 | eleq2d 2236 | . . . . . . . . 9 |
31 | 29 | sseq1d 3171 | . . . . . . . . 9 |
32 | 30, 31 | anbi12d 465 | . . . . . . . 8 |
33 | xpeq2 4619 | . . . . . . . . . . 11 | |
34 | 1stexg 6135 | . . . . . . . . . . . . 13 | |
35 | 34 | elv 2730 | . . . . . . . . . . . 12 |
36 | 2ndexg 6136 | . . . . . . . . . . . . 13 | |
37 | 36 | elv 2730 | . . . . . . . . . . . 12 |
38 | 35, 37 | xpsn 5661 | . . . . . . . . . . 11 |
39 | 33, 38 | eqtrdi 2215 | . . . . . . . . . 10 |
40 | 39 | eleq2d 2236 | . . . . . . . . 9 |
41 | 39 | sseq1d 3171 | . . . . . . . . 9 |
42 | 40, 41 | anbi12d 465 | . . . . . . . 8 |
43 | 32, 42 | rspc2ev 2845 | . . . . . . 7 |
44 | 17, 20, 25, 28, 43 | syl112anc 1232 | . . . . . 6 |
45 | 44 | expr 373 | . . . . 5 |
46 | 45 | ralrimdva 2546 | . . . 4 |
47 | eltx 12899 | . . . . 5 | |
48 | 1, 2, 47 | syl2an 287 | . . . 4 |
49 | 46, 48 | sylibrd 168 | . . 3 |
50 | 49 | ssrdv 3148 | . 2 |
51 | 12, 50 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 wss 3116 cpw 3559 csn 3576 cop 3579 cuni 3789 cxp 4602 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 ctop 12635 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-tx 12893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |