| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2omotaplemst | Unicode version | ||
| Description: Lemma for 2omotap 7371. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2omotaplemst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oneel 7368 |
. . . 4
| |
| 2 | 2omotaplemap 7369 |
. . . . . 6
| |
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | 2onn 6607 |
. . . . . . . . . 10
| |
| 5 | 4 | elexi 2784 |
. . . . . . . . 9
|
| 6 | 5, 5 | xpex 4790 |
. . . . . . . 8
|
| 7 | opabssxp 4749 |
. . . . . . . 8
| |
| 8 | 6, 7 | ssexi 4182 |
. . . . . . 7
|
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | opabssxp 4749 |
. . . . . . . 8
| |
| 11 | 6, 10 | ssexi 4182 |
. . . . . . 7
|
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | simpl 109 |
. . . . . 6
| |
| 14 | 2onetap 7367 |
. . . . . . 7
| |
| 15 | 14 | a1i 9 |
. . . . . 6
|
| 16 | tapeq1 7364 |
. . . . . . 7
| |
| 17 | tapeq1 7364 |
. . . . . . 7
| |
| 18 | 16, 17 | mob 2955 |
. . . . . 6
|
| 19 | 9, 12, 13, 15, 18 | syl211anc 1256 |
. . . . 5
|
| 20 | 3, 19 | mpbird 167 |
. . . 4
|
| 21 | 1, 20 | eleqtrid 2294 |
. . 3
|
| 22 | 0lt2o 6527 |
. . . 4
| |
| 23 | 1lt2o 6528 |
. . . 4
| |
| 24 | neeq1 2389 |
. . . . . 6
| |
| 25 | 24 | anbi2d 464 |
. . . . 5
|
| 26 | neeq2 2390 |
. . . . . 6
| |
| 27 | 26 | anbi2d 464 |
. . . . 5
|
| 28 | 25, 27 | opelopab2 4317 |
. . . 4
|
| 29 | 22, 23, 28 | mp2an 426 |
. . 3
|
| 30 | 21, 29 | sylib 122 |
. 2
|
| 31 | 30 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-1o 6502 df-2o 6503 df-pap 7360 df-tap 7362 |
| This theorem is referenced by: 2omotap 7371 |
| Copyright terms: Public domain | W3C validator |