ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst Unicode version

Theorem 2omotaplemst 7370
Description: Lemma for 2omotap 7371. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  ph )
Distinct variable group:    ph, r

Proof of Theorem 2omotaplemst
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7368 . . . 4  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
2 2omotaplemap 7369 . . . . . 6  |-  ( -. 
-.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o )
32adantl 277 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp 
2o )
4 2onn 6607 . . . . . . . . . 10  |-  2o  e.  om
54elexi 2784 . . . . . . . . 9  |-  2o  e.  _V
65, 5xpex 4790 . . . . . . . 8  |-  ( 2o 
X.  2o )  e. 
_V
7 opabssxp 4749 . . . . . . . 8  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  C_  ( 2o  X.  2o )
86, 7ssexi 4182 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V
98a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V )
10 opabssxp 4749 . . . . . . . 8  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  C_  ( 2o  X.  2o )
116, 10ssexi 4182 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V
1211a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V )
13 simpl 109 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  E* r  r TAp  2o )
14 2onetap 7367 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
1514a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
16 tapeq1 7364 . . . . . . 7  |-  ( r  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  ->  (
r TAp  2o  <->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
)
17 tapeq1 7364 . . . . . . 7  |-  ( r  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  ->  ( r TAp  2o 
<->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp 
2o ) )
1816, 17mob 2955 . . . . . 6  |-  ( ( ( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V  /\ 
{ <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V )  /\  E* r  r TAp  2o  /\ 
{ <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )  ->  ( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o ) )
199, 12, 13, 15, 18syl211anc 1256 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  -> 
( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o ) )
203, 19mpbird 167 . . . 4  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } )
211, 20eleqtrid 2294 . . 3  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } )
22 0lt2o 6527 . . . 4  |-  (/)  e.  2o
23 1lt2o 6528 . . . 4  |-  1o  e.  2o
24 neeq1 2389 . . . . . 6  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
2524anbi2d 464 . . . . 5  |-  ( u  =  (/)  ->  ( (
ph  /\  u  =/=  v )  <->  ( ph  /\  (/)  =/=  v ) ) )
26 neeq2 2390 . . . . . 6  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
2726anbi2d 464 . . . . 5  |-  ( v  =  1o  ->  (
( ph  /\  (/)  =/=  v
)  <->  ( ph  /\  (/) 
=/=  1o ) ) )
2825, 27opelopab2 4317 . . . 4  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  ( ph  /\  (/)  =/=  1o ) ) )
2922, 23, 28mp2an 426 . . 3  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  ( ph  /\  (/)  =/=  1o ) )
3021, 29sylib 122 . 2  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  -> 
( ph  /\  (/)  =/=  1o ) )
3130simpld 112 1  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E*wmo 2055    e. wcel 2176    =/= wne 2376   _Vcvv 2772   (/)c0 3460   <.cop 3636   {copab 4104   omcom 4638    X. cxp 4673   1oc1o 6495   2oc2o 6496   TAp wtap 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-1o 6502  df-2o 6503  df-pap 7360  df-tap 7362
This theorem is referenced by:  2omotap  7371
  Copyright terms: Public domain W3C validator