ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst Unicode version

Theorem 2omotaplemst 7405
Description: Lemma for 2omotap 7406. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  ph )
Distinct variable group:    ph, r

Proof of Theorem 2omotaplemst
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7403 . . . 4  |-  <. (/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }
2 2omotaplemap 7404 . . . . . 6  |-  ( -. 
-.  ph  ->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o )
32adantl 277 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp 
2o )
4 2onn 6630 . . . . . . . . . 10  |-  2o  e.  om
54elexi 2789 . . . . . . . . 9  |-  2o  e.  _V
65, 5xpex 4808 . . . . . . . 8  |-  ( 2o 
X.  2o )  e. 
_V
7 opabssxp 4767 . . . . . . . 8  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  C_  ( 2o  X.  2o )
86, 7ssexi 4198 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V
98a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V )
10 opabssxp 4767 . . . . . . . 8  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  C_  ( 2o  X.  2o )
116, 10ssexi 4198 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V
1211a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V )
13 simpl 109 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  E* r  r TAp  2o )
14 2onetap 7402 . . . . . . 7  |-  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o
1514a1i 9 . . . . . 6  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
16 tapeq1 7399 . . . . . . 7  |-  ( r  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  ->  (
r TAp  2o  <->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )
)
17 tapeq1 7399 . . . . . . 7  |-  ( r  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  ->  ( r TAp  2o 
<->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp 
2o ) )
1816, 17mob 2962 . . . . . 6  |-  ( ( ( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  e.  _V  /\ 
{ <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) }  e.  _V )  /\  E* r  r TAp  2o  /\ 
{ <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) } TAp  2o )  ->  ( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o ) )
199, 12, 13, 15, 18syl211anc 1256 . . . . 5  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  -> 
( { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v ) ) } TAp  2o ) )
203, 19mpbird 167 . . . 4  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  { <. u ,  v
>.  |  ( (
u  e.  2o  /\  v  e.  2o )  /\  u  =/=  v
) }  =  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } )
211, 20eleqtrid 2296 . . 3  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) } )
22 0lt2o 6550 . . . 4  |-  (/)  e.  2o
23 1lt2o 6551 . . . 4  |-  1o  e.  2o
24 neeq1 2391 . . . . . 6  |-  ( u  =  (/)  ->  ( u  =/=  v  <->  (/)  =/=  v
) )
2524anbi2d 464 . . . . 5  |-  ( u  =  (/)  ->  ( (
ph  /\  u  =/=  v )  <->  ( ph  /\  (/)  =/=  v ) ) )
26 neeq2 2392 . . . . . 6  |-  ( v  =  1o  ->  ( (/) 
=/=  v  <->  (/)  =/=  1o ) )
2726anbi2d 464 . . . . 5  |-  ( v  =  1o  ->  (
( ph  /\  (/)  =/=  v
)  <->  ( ph  /\  (/) 
=/=  1o ) ) )
2825, 27opelopab2 4335 . . . 4  |-  ( (
(/)  e.  2o  /\  1o  e.  2o )  ->  ( <.
(/) ,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  ( ph  /\  (/)  =/=  1o ) ) )
2922, 23, 28mp2an 426 . . 3  |-  ( <. (/)
,  1o >.  e.  { <. u ,  v >.  |  ( ( u  e.  2o  /\  v  e.  2o )  /\  ( ph  /\  u  =/=  v
) ) }  <->  ( ph  /\  (/)  =/=  1o ) )
3021, 29sylib 122 . 2  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  -> 
( ph  /\  (/)  =/=  1o ) )
3130simpld 112 1  |-  ( ( E* r  r TAp  2o  /\ 
-.  -.  ph )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E*wmo 2056    e. wcel 2178    =/= wne 2378   _Vcvv 2776   (/)c0 3468   <.cop 3646   {copab 4120   omcom 4656    X. cxp 4691   1oc1o 6518   2oc2o 6519   TAp wtap 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-1o 6525  df-2o 6526  df-pap 7395  df-tap 7397
This theorem is referenced by:  2omotap  7406
  Copyright terms: Public domain W3C validator