| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2omotaplemst | Unicode version | ||
| Description: Lemma for 2omotap 7406. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2omotaplemst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oneel 7403 |
. . . 4
| |
| 2 | 2omotaplemap 7404 |
. . . . . 6
| |
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | 2onn 6630 |
. . . . . . . . . 10
| |
| 5 | 4 | elexi 2789 |
. . . . . . . . 9
|
| 6 | 5, 5 | xpex 4808 |
. . . . . . . 8
|
| 7 | opabssxp 4767 |
. . . . . . . 8
| |
| 8 | 6, 7 | ssexi 4198 |
. . . . . . 7
|
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | opabssxp 4767 |
. . . . . . . 8
| |
| 11 | 6, 10 | ssexi 4198 |
. . . . . . 7
|
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | simpl 109 |
. . . . . 6
| |
| 14 | 2onetap 7402 |
. . . . . . 7
| |
| 15 | 14 | a1i 9 |
. . . . . 6
|
| 16 | tapeq1 7399 |
. . . . . . 7
| |
| 17 | tapeq1 7399 |
. . . . . . 7
| |
| 18 | 16, 17 | mob 2962 |
. . . . . 6
|
| 19 | 9, 12, 13, 15, 18 | syl211anc 1256 |
. . . . 5
|
| 20 | 3, 19 | mpbird 167 |
. . . 4
|
| 21 | 1, 20 | eleqtrid 2296 |
. . 3
|
| 22 | 0lt2o 6550 |
. . . 4
| |
| 23 | 1lt2o 6551 |
. . . 4
| |
| 24 | neeq1 2391 |
. . . . . 6
| |
| 25 | 24 | anbi2d 464 |
. . . . 5
|
| 26 | neeq2 2392 |
. . . . . 6
| |
| 27 | 26 | anbi2d 464 |
. . . . 5
|
| 28 | 25, 27 | opelopab2 4335 |
. . . 4
|
| 29 | 22, 23, 28 | mp2an 426 |
. . 3
|
| 30 | 21, 29 | sylib 122 |
. 2
|
| 31 | 30 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-1o 6525 df-2o 6526 df-pap 7395 df-tap 7397 |
| This theorem is referenced by: 2omotap 7406 |
| Copyright terms: Public domain | W3C validator |