| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2omotaplemst | Unicode version | ||
| Description: Lemma for 2omotap 7326. (Contributed by Jim Kingdon, 6-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| 2omotaplemst | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2oneel 7323 | 
. . . 4
 | |
| 2 | 2omotaplemap 7324 | 
. . . . . 6
 | |
| 3 | 2 | adantl 277 | 
. . . . 5
 | 
| 4 | 2onn 6579 | 
. . . . . . . . . 10
 | |
| 5 | 4 | elexi 2775 | 
. . . . . . . . 9
 | 
| 6 | 5, 5 | xpex 4778 | 
. . . . . . . 8
 | 
| 7 | opabssxp 4737 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | ssexi 4171 | 
. . . . . . 7
 | 
| 9 | 8 | a1i 9 | 
. . . . . 6
 | 
| 10 | opabssxp 4737 | 
. . . . . . . 8
 | |
| 11 | 6, 10 | ssexi 4171 | 
. . . . . . 7
 | 
| 12 | 11 | a1i 9 | 
. . . . . 6
 | 
| 13 | simpl 109 | 
. . . . . 6
 | |
| 14 | 2onetap 7322 | 
. . . . . . 7
 | |
| 15 | 14 | a1i 9 | 
. . . . . 6
 | 
| 16 | tapeq1 7319 | 
. . . . . . 7
 | |
| 17 | tapeq1 7319 | 
. . . . . . 7
 | |
| 18 | 16, 17 | mob 2946 | 
. . . . . 6
 | 
| 19 | 9, 12, 13, 15, 18 | syl211anc 1255 | 
. . . . 5
 | 
| 20 | 3, 19 | mpbird 167 | 
. . . 4
 | 
| 21 | 1, 20 | eleqtrid 2285 | 
. . 3
 | 
| 22 | 0lt2o 6499 | 
. . . 4
 | |
| 23 | 1lt2o 6500 | 
. . . 4
 | |
| 24 | neeq1 2380 | 
. . . . . 6
 | |
| 25 | 24 | anbi2d 464 | 
. . . . 5
 | 
| 26 | neeq2 2381 | 
. . . . . 6
 | |
| 27 | 26 | anbi2d 464 | 
. . . . 5
 | 
| 28 | 25, 27 | opelopab2 4305 | 
. . . 4
 | 
| 29 | 22, 23, 28 | mp2an 426 | 
. . 3
 | 
| 30 | 21, 29 | sylib 122 | 
. 2
 | 
| 31 | 30 | simpld 112 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-1o 6474 df-2o 6475 df-pap 7315 df-tap 7317 | 
| This theorem is referenced by: 2omotap 7326 | 
| Copyright terms: Public domain | W3C validator |