ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrrid Unicode version

Theorem eleqtrrid 2256
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrrid.1  |-  A  e.  B
eleqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
eleqtrrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrrid
StepHypRef Expression
1 eleqtrrid.1 . 2  |-  A  e.  B
2 eleqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2171 . 2  |-  ( ph  ->  B  =  C )
41, 3eleqtrid 2255 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  rabsnt  3651  0elnn  4596  canth  5796  tfrexlem  6302  rdgtfr  6342  rdgruledefgg  6343  exmidonfinlem  7149  hashinfom  10691  ennnfonelemhom  12348  exmid1stab  13880
  Copyright terms: Public domain W3C validator