Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | |
eleqtrrid.2 |
Ref | Expression |
---|---|
eleqtrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 | |
2 | eleqtrrid.2 | . . 3 | |
3 | 2 | eqcomd 2160 | . 2 |
4 | 1, 3 | eleqtrid 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-clel 2150 |
This theorem is referenced by: rabsnt 3630 0elnn 4572 tfrexlem 6271 rdgtfr 6311 rdgruledefgg 6312 exmidonfinlem 7107 hashinfom 10629 ennnfonelemhom 12103 exmid1stab 13519 |
Copyright terms: Public domain | W3C validator |