Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | |
eleqtrrid.2 |
Ref | Expression |
---|---|
eleqtrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 | |
2 | eleqtrrid.2 | . . 3 | |
3 | 2 | eqcomd 2176 | . 2 |
4 | 1, 3 | eleqtrid 2259 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: rabsnt 3658 0elnn 4603 canth 5807 tfrexlem 6313 rdgtfr 6353 rdgruledefgg 6354 exmidonfinlem 7170 hashinfom 10712 ennnfonelemhom 12370 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |