Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrrid.1 | |
eleqtrrid.2 |
Ref | Expression |
---|---|
eleqtrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrid.1 | . 2 | |
2 | eleqtrrid.2 | . . 3 | |
3 | 2 | eqcomd 2171 | . 2 |
4 | 1, 3 | eleqtrid 2255 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: rabsnt 3651 0elnn 4596 canth 5796 tfrexlem 6302 rdgtfr 6342 rdgruledefgg 6343 exmidonfinlem 7149 hashinfom 10691 ennnfonelemhom 12348 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |