ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrrid Unicode version

Theorem eleqtrrid 2244
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrrid.1  |-  A  e.  B
eleqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
eleqtrrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrrid
StepHypRef Expression
1 eleqtrrid.1 . 2  |-  A  e.  B
2 eleqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2160 . 2  |-  ( ph  ->  B  =  C )
41, 3eleqtrid 2243 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-17 1503  ax-ial 1511  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-cleq 2147  df-clel 2150
This theorem is referenced by:  rabsnt  3630  0elnn  4572  tfrexlem  6271  rdgtfr  6311  rdgruledefgg  6312  exmidonfinlem  7107  hashinfom  10629  ennnfonelemhom  12103  exmid1stab  13519
  Copyright terms: Public domain W3C validator