ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrrid Unicode version

Theorem eleqtrrid 2286
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrrid.1  |-  A  e.  B
eleqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
eleqtrrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrrid
StepHypRef Expression
1 eleqtrrid.1 . 2  |-  A  e.  B
2 eleqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2202 . 2  |-  ( ph  ->  B  =  C )
41, 3eleqtrid 2285 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  rabsnt  3697  exmid1stab  4241  0elnn  4655  canth  5875  tfrexlem  6392  rdgtfr  6432  rdgruledefgg  6433  exmidonfinlem  7260  hashinfom  10870  ennnfonelemhom  12632  fnpr2ob  12983
  Copyright terms: Public domain W3C validator