ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrrid Unicode version

Theorem eleqtrrid 2279
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrrid.1  |-  A  e.  B
eleqtrrid.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
eleqtrrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrrid
StepHypRef Expression
1 eleqtrrid.1 . 2  |-  A  e.  B
2 eleqtrrid.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2195 . 2  |-  ( ph  ->  B  =  C )
41, 3eleqtrid 2278 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-clel 2185
This theorem is referenced by:  rabsnt  3682  exmid1stab  4226  0elnn  4636  canth  5849  tfrexlem  6358  rdgtfr  6398  rdgruledefgg  6399  exmidonfinlem  7221  hashinfom  10789  ennnfonelemhom  12465  fnpr2ob  12813
  Copyright terms: Public domain W3C validator