| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth | Unicode version | ||
| Description: The ordered pair theorem.
If two ordered pairs are equal, their first
elements are equal and their second elements are equal. Exercise 6 of
[TakeutiZaring] p. 16. Note that
|
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | opth1.2 |
. . . 4
| |
| 3 | 1, 2 | opth1 4322 |
. . 3
|
| 4 | 1, 2 | opi1 4318 |
. . . . . . 7
|
| 5 | id 19 |
. . . . . . 7
| |
| 6 | 4, 5 | eleqtrid 2318 |
. . . . . 6
|
| 7 | oprcl 3881 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | simprd 114 |
. . . 4
|
| 10 | 3 | opeq1d 3863 |
. . . . . . . 8
|
| 11 | 10, 5 | eqtr3d 2264 |
. . . . . . 7
|
| 12 | 8 | simpld 112 |
. . . . . . . 8
|
| 13 | dfopg 3855 |
. . . . . . . 8
| |
| 14 | 12, 2, 13 | sylancl 413 |
. . . . . . 7
|
| 15 | 11, 14 | eqtr3d 2264 |
. . . . . 6
|
| 16 | dfopg 3855 |
. . . . . . 7
| |
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3d 2264 |
. . . . 5
|
| 19 | prexg 4295 |
. . . . . . 7
| |
| 20 | 12, 2, 19 | sylancl 413 |
. . . . . 6
|
| 21 | prexg 4295 |
. . . . . . 7
| |
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | preqr2g 3845 |
. . . . . 6
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 18, 24 | mpd 13 |
. . . 4
|
| 26 | preq2 3744 |
. . . . . . 7
| |
| 27 | 26 | eqeq2d 2241 |
. . . . . 6
|
| 28 | eqeq2 2239 |
. . . . . 6
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . 5
|
| 30 | vex 2802 |
. . . . . 6
| |
| 31 | 2, 30 | preqr2 3847 |
. . . . 5
|
| 32 | 29, 31 | vtoclg 2861 |
. . . 4
|
| 33 | 9, 25, 32 | sylc 62 |
. . 3
|
| 34 | 3, 33 | jca 306 |
. 2
|
| 35 | opeq12 3859 |
. 2
| |
| 36 | 34, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opthg 4324 otth2 4327 copsexg 4330 copsex4g 4333 opcom 4337 moop2 4338 opelopabsbALT 4347 opelopabsb 4348 ralxpf 4868 rexxpf 4869 cnvcnvsn 5205 funopg 5352 funinsn 5370 brabvv 6050 xpdom2 6990 xpf1o 7005 djuf1olem 7220 enq0ref 7620 enq0tr 7621 mulnnnq0 7637 eqresr 8023 cnref1o 9846 fisumcom2 11949 fprodcom2fi 12137 qredeu 12619 fnpr2ob 13373 |
| Copyright terms: Public domain | W3C validator |