Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opth | Unicode version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that and are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 | |
2 | opth1.2 | . . . 4 | |
3 | 1, 2 | opth1 4221 | . . 3 |
4 | 1, 2 | opi1 4217 | . . . . . . 7 |
5 | id 19 | . . . . . . 7 | |
6 | 4, 5 | eleqtrid 2259 | . . . . . 6 |
7 | oprcl 3789 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | simprd 113 | . . . 4 |
10 | 3 | opeq1d 3771 | . . . . . . . 8 |
11 | 10, 5 | eqtr3d 2205 | . . . . . . 7 |
12 | 8 | simpld 111 | . . . . . . . 8 |
13 | dfopg 3763 | . . . . . . . 8 | |
14 | 12, 2, 13 | sylancl 411 | . . . . . . 7 |
15 | 11, 14 | eqtr3d 2205 | . . . . . 6 |
16 | dfopg 3763 | . . . . . . 7 | |
17 | 8, 16 | syl 14 | . . . . . 6 |
18 | 15, 17 | eqtr3d 2205 | . . . . 5 |
19 | prexg 4196 | . . . . . . 7 | |
20 | 12, 2, 19 | sylancl 411 | . . . . . 6 |
21 | prexg 4196 | . . . . . . 7 | |
22 | 8, 21 | syl 14 | . . . . . 6 |
23 | preqr2g 3754 | . . . . . 6 | |
24 | 20, 22, 23 | syl2anc 409 | . . . . 5 |
25 | 18, 24 | mpd 13 | . . . 4 |
26 | preq2 3661 | . . . . . . 7 | |
27 | 26 | eqeq2d 2182 | . . . . . 6 |
28 | eqeq2 2180 | . . . . . 6 | |
29 | 27, 28 | imbi12d 233 | . . . . 5 |
30 | vex 2733 | . . . . . 6 | |
31 | 2, 30 | preqr2 3756 | . . . . 5 |
32 | 29, 31 | vtoclg 2790 | . . . 4 |
33 | 9, 25, 32 | sylc 62 | . . 3 |
34 | 3, 33 | jca 304 | . 2 |
35 | opeq12 3767 | . 2 | |
36 | 34, 35 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 csn 3583 cpr 3584 cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opthg 4223 otth2 4226 copsexg 4229 copsex4g 4232 opcom 4235 moop2 4236 opelopabsbALT 4244 opelopabsb 4245 ralxpf 4757 rexxpf 4758 cnvcnvsn 5087 funopg 5232 funinsn 5247 brabvv 5899 xpdom2 6809 xpf1o 6822 djuf1olem 7030 enq0ref 7395 enq0tr 7396 mulnnnq0 7412 eqresr 7798 cnref1o 9609 fisumcom2 11401 fprodcom2fi 11589 qredeu 12051 |
Copyright terms: Public domain | W3C validator |