ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth Unicode version

Theorem opth 4323
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 4322 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 4318 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 19 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5eleqtrid 2318 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 3881 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 14 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 114 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 3863 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2264 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 112 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 3855 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 413 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2264 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 3855 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2264 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prexg 4295 . . . . . . 7  |-  ( ( C  e.  _V  /\  B  e.  _V )  ->  { C ,  B }  e.  _V )
2012, 2, 19sylancl 413 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  e.  _V )
21 prexg 4295 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  { C ,  D }  e.  _V )
228, 21syl 14 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  D }  e.  _V )
23 preqr2g 3845 . . . . . 6  |-  ( ( { C ,  B }  e.  _V  /\  { C ,  D }  e.  _V )  ->  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } ) )
2420, 22, 23syl2anc 411 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D }
) )
2518, 24mpd 13 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
26 preq2 3744 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2726eqeq2d 2241 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
28 eqeq2 2239 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2927, 28imbi12d 234 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
30 vex 2802 . . . . . 6  |-  x  e. 
_V
312, 30preqr2 3847 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
3229, 31vtoclg 2861 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
339, 25, 32sylc 62 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
343, 33jca 306 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
35 opeq12 3859 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3634, 35impbii 126 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   {cpr 3667   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  opthg  4324  otth2  4327  copsexg  4330  copsex4g  4333  opcom  4337  moop2  4338  opelopabsbALT  4347  opelopabsb  4348  ralxpf  4868  rexxpf  4869  cnvcnvsn  5205  funopg  5352  funinsn  5370  brabvv  6050  xpdom2  6990  xpf1o  7005  djuf1olem  7220  enq0ref  7620  enq0tr  7621  mulnnnq0  7637  eqresr  8023  cnref1o  9846  fisumcom2  11949  fprodcom2fi  12137  qredeu  12619  fnpr2ob  13373
  Copyright terms: Public domain W3C validator