Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opth | Unicode version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that and are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 | |
2 | opth1.2 | . . . 4 | |
3 | 1, 2 | opth1 4214 | . . 3 |
4 | 1, 2 | opi1 4210 | . . . . . . 7 |
5 | id 19 | . . . . . . 7 | |
6 | 4, 5 | eleqtrid 2255 | . . . . . 6 |
7 | oprcl 3782 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | simprd 113 | . . . 4 |
10 | 3 | opeq1d 3764 | . . . . . . . 8 |
11 | 10, 5 | eqtr3d 2200 | . . . . . . 7 |
12 | 8 | simpld 111 | . . . . . . . 8 |
13 | dfopg 3756 | . . . . . . . 8 | |
14 | 12, 2, 13 | sylancl 410 | . . . . . . 7 |
15 | 11, 14 | eqtr3d 2200 | . . . . . 6 |
16 | dfopg 3756 | . . . . . . 7 | |
17 | 8, 16 | syl 14 | . . . . . 6 |
18 | 15, 17 | eqtr3d 2200 | . . . . 5 |
19 | prexg 4189 | . . . . . . 7 | |
20 | 12, 2, 19 | sylancl 410 | . . . . . 6 |
21 | prexg 4189 | . . . . . . 7 | |
22 | 8, 21 | syl 14 | . . . . . 6 |
23 | preqr2g 3747 | . . . . . 6 | |
24 | 20, 22, 23 | syl2anc 409 | . . . . 5 |
25 | 18, 24 | mpd 13 | . . . 4 |
26 | preq2 3654 | . . . . . . 7 | |
27 | 26 | eqeq2d 2177 | . . . . . 6 |
28 | eqeq2 2175 | . . . . . 6 | |
29 | 27, 28 | imbi12d 233 | . . . . 5 |
30 | vex 2729 | . . . . . 6 | |
31 | 2, 30 | preqr2 3749 | . . . . 5 |
32 | 29, 31 | vtoclg 2786 | . . . 4 |
33 | 9, 25, 32 | sylc 62 | . . 3 |
34 | 3, 33 | jca 304 | . 2 |
35 | opeq12 3760 | . 2 | |
36 | 34, 35 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 cpr 3577 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opthg 4216 otth2 4219 copsexg 4222 copsex4g 4225 opcom 4228 moop2 4229 opelopabsbALT 4237 opelopabsb 4238 ralxpf 4750 rexxpf 4751 cnvcnvsn 5080 funopg 5222 funinsn 5237 brabvv 5888 xpdom2 6797 xpf1o 6810 djuf1olem 7018 enq0ref 7374 enq0tr 7375 mulnnnq0 7391 eqresr 7777 cnref1o 9588 fisumcom2 11379 fprodcom2fi 11567 qredeu 12029 |
Copyright terms: Public domain | W3C validator |