| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth | Unicode version | ||
| Description: The ordered pair theorem.
If two ordered pairs are equal, their first
elements are equal and their second elements are equal. Exercise 6 of
[TakeutiZaring] p. 16. Note that
|
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | opth1.2 |
. . . 4
| |
| 3 | 1, 2 | opth1 4281 |
. . 3
|
| 4 | 1, 2 | opi1 4277 |
. . . . . . 7
|
| 5 | id 19 |
. . . . . . 7
| |
| 6 | 4, 5 | eleqtrid 2294 |
. . . . . 6
|
| 7 | oprcl 3843 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | simprd 114 |
. . . 4
|
| 10 | 3 | opeq1d 3825 |
. . . . . . . 8
|
| 11 | 10, 5 | eqtr3d 2240 |
. . . . . . 7
|
| 12 | 8 | simpld 112 |
. . . . . . . 8
|
| 13 | dfopg 3817 |
. . . . . . . 8
| |
| 14 | 12, 2, 13 | sylancl 413 |
. . . . . . 7
|
| 15 | 11, 14 | eqtr3d 2240 |
. . . . . 6
|
| 16 | dfopg 3817 |
. . . . . . 7
| |
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3d 2240 |
. . . . 5
|
| 19 | prexg 4256 |
. . . . . . 7
| |
| 20 | 12, 2, 19 | sylancl 413 |
. . . . . 6
|
| 21 | prexg 4256 |
. . . . . . 7
| |
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | preqr2g 3808 |
. . . . . 6
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 18, 24 | mpd 13 |
. . . 4
|
| 26 | preq2 3711 |
. . . . . . 7
| |
| 27 | 26 | eqeq2d 2217 |
. . . . . 6
|
| 28 | eqeq2 2215 |
. . . . . 6
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . 5
|
| 30 | vex 2775 |
. . . . . 6
| |
| 31 | 2, 30 | preqr2 3810 |
. . . . 5
|
| 32 | 29, 31 | vtoclg 2833 |
. . . 4
|
| 33 | 9, 25, 32 | sylc 62 |
. . 3
|
| 34 | 3, 33 | jca 306 |
. 2
|
| 35 | opeq12 3821 |
. 2
| |
| 36 | 34, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opthg 4283 otth2 4286 copsexg 4289 copsex4g 4292 opcom 4296 moop2 4297 opelopabsbALT 4306 opelopabsb 4307 ralxpf 4825 rexxpf 4826 cnvcnvsn 5160 funopg 5306 funinsn 5324 brabvv 5993 xpdom2 6928 xpf1o 6943 djuf1olem 7157 enq0ref 7548 enq0tr 7549 mulnnnq0 7565 eqresr 7951 cnref1o 9774 fisumcom2 11782 fprodcom2fi 11970 qredeu 12452 fnpr2ob 13205 |
| Copyright terms: Public domain | W3C validator |