| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth | Unicode version | ||
| Description: The ordered pair theorem.
If two ordered pairs are equal, their first
elements are equal and their second elements are equal. Exercise 6 of
[TakeutiZaring] p. 16. Note that
|
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | opth1.2 |
. . . 4
| |
| 3 | 1, 2 | opth1 4270 |
. . 3
|
| 4 | 1, 2 | opi1 4266 |
. . . . . . 7
|
| 5 | id 19 |
. . . . . . 7
| |
| 6 | 4, 5 | eleqtrid 2285 |
. . . . . 6
|
| 7 | oprcl 3833 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | simprd 114 |
. . . 4
|
| 10 | 3 | opeq1d 3815 |
. . . . . . . 8
|
| 11 | 10, 5 | eqtr3d 2231 |
. . . . . . 7
|
| 12 | 8 | simpld 112 |
. . . . . . . 8
|
| 13 | dfopg 3807 |
. . . . . . . 8
| |
| 14 | 12, 2, 13 | sylancl 413 |
. . . . . . 7
|
| 15 | 11, 14 | eqtr3d 2231 |
. . . . . 6
|
| 16 | dfopg 3807 |
. . . . . . 7
| |
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3d 2231 |
. . . . 5
|
| 19 | prexg 4245 |
. . . . . . 7
| |
| 20 | 12, 2, 19 | sylancl 413 |
. . . . . 6
|
| 21 | prexg 4245 |
. . . . . . 7
| |
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | preqr2g 3798 |
. . . . . 6
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 18, 24 | mpd 13 |
. . . 4
|
| 26 | preq2 3701 |
. . . . . . 7
| |
| 27 | 26 | eqeq2d 2208 |
. . . . . 6
|
| 28 | eqeq2 2206 |
. . . . . 6
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . 5
|
| 30 | vex 2766 |
. . . . . 6
| |
| 31 | 2, 30 | preqr2 3800 |
. . . . 5
|
| 32 | 29, 31 | vtoclg 2824 |
. . . 4
|
| 33 | 9, 25, 32 | sylc 62 |
. . 3
|
| 34 | 3, 33 | jca 306 |
. 2
|
| 35 | opeq12 3811 |
. 2
| |
| 36 | 34, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opthg 4272 otth2 4275 copsexg 4278 copsex4g 4281 opcom 4284 moop2 4285 opelopabsbALT 4294 opelopabsb 4295 ralxpf 4813 rexxpf 4814 cnvcnvsn 5147 funopg 5293 funinsn 5308 brabvv 5972 xpdom2 6899 xpf1o 6914 djuf1olem 7128 enq0ref 7517 enq0tr 7518 mulnnnq0 7534 eqresr 7920 cnref1o 9742 fisumcom2 11620 fprodcom2fi 11808 qredeu 12290 fnpr2ob 13042 |
| Copyright terms: Public domain | W3C validator |