| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth | Unicode version | ||
| Description: The ordered pair theorem.
If two ordered pairs are equal, their first
elements are equal and their second elements are equal. Exercise 6 of
[TakeutiZaring] p. 16. Note that
|
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | opth1.2 |
. . . 4
| |
| 3 | 1, 2 | opth1 4269 |
. . 3
|
| 4 | 1, 2 | opi1 4265 |
. . . . . . 7
|
| 5 | id 19 |
. . . . . . 7
| |
| 6 | 4, 5 | eleqtrid 2285 |
. . . . . 6
|
| 7 | oprcl 3832 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | simprd 114 |
. . . 4
|
| 10 | 3 | opeq1d 3814 |
. . . . . . . 8
|
| 11 | 10, 5 | eqtr3d 2231 |
. . . . . . 7
|
| 12 | 8 | simpld 112 |
. . . . . . . 8
|
| 13 | dfopg 3806 |
. . . . . . . 8
| |
| 14 | 12, 2, 13 | sylancl 413 |
. . . . . . 7
|
| 15 | 11, 14 | eqtr3d 2231 |
. . . . . 6
|
| 16 | dfopg 3806 |
. . . . . . 7
| |
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3d 2231 |
. . . . 5
|
| 19 | prexg 4244 |
. . . . . . 7
| |
| 20 | 12, 2, 19 | sylancl 413 |
. . . . . 6
|
| 21 | prexg 4244 |
. . . . . . 7
| |
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | preqr2g 3797 |
. . . . . 6
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 18, 24 | mpd 13 |
. . . 4
|
| 26 | preq2 3700 |
. . . . . . 7
| |
| 27 | 26 | eqeq2d 2208 |
. . . . . 6
|
| 28 | eqeq2 2206 |
. . . . . 6
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . 5
|
| 30 | vex 2766 |
. . . . . 6
| |
| 31 | 2, 30 | preqr2 3799 |
. . . . 5
|
| 32 | 29, 31 | vtoclg 2824 |
. . . 4
|
| 33 | 9, 25, 32 | sylc 62 |
. . 3
|
| 34 | 3, 33 | jca 306 |
. 2
|
| 35 | opeq12 3810 |
. 2
| |
| 36 | 34, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: opthg 4271 otth2 4274 copsexg 4277 copsex4g 4280 opcom 4283 moop2 4284 opelopabsbALT 4293 opelopabsb 4294 ralxpf 4812 rexxpf 4813 cnvcnvsn 5146 funopg 5292 funinsn 5307 brabvv 5968 xpdom2 6890 xpf1o 6905 djuf1olem 7119 enq0ref 7500 enq0tr 7501 mulnnnq0 7517 eqresr 7903 cnref1o 9725 fisumcom2 11603 fprodcom2fi 11791 qredeu 12265 fnpr2ob 12983 |
| Copyright terms: Public domain | W3C validator |