| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth | Unicode version | ||
| Description: The ordered pair theorem.
If two ordered pairs are equal, their first
elements are equal and their second elements are equal. Exercise 6 of
[TakeutiZaring] p. 16. Note that
|
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | opth1.2 |
. . . 4
| |
| 3 | 1, 2 | opth1 4298 |
. . 3
|
| 4 | 1, 2 | opi1 4294 |
. . . . . . 7
|
| 5 | id 19 |
. . . . . . 7
| |
| 6 | 4, 5 | eleqtrid 2296 |
. . . . . 6
|
| 7 | oprcl 3857 |
. . . . . 6
| |
| 8 | 6, 7 | syl 14 |
. . . . 5
|
| 9 | 8 | simprd 114 |
. . . 4
|
| 10 | 3 | opeq1d 3839 |
. . . . . . . 8
|
| 11 | 10, 5 | eqtr3d 2242 |
. . . . . . 7
|
| 12 | 8 | simpld 112 |
. . . . . . . 8
|
| 13 | dfopg 3831 |
. . . . . . . 8
| |
| 14 | 12, 2, 13 | sylancl 413 |
. . . . . . 7
|
| 15 | 11, 14 | eqtr3d 2242 |
. . . . . 6
|
| 16 | dfopg 3831 |
. . . . . . 7
| |
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 15, 17 | eqtr3d 2242 |
. . . . 5
|
| 19 | prexg 4271 |
. . . . . . 7
| |
| 20 | 12, 2, 19 | sylancl 413 |
. . . . . 6
|
| 21 | prexg 4271 |
. . . . . . 7
| |
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | preqr2g 3821 |
. . . . . 6
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 18, 24 | mpd 13 |
. . . 4
|
| 26 | preq2 3721 |
. . . . . . 7
| |
| 27 | 26 | eqeq2d 2219 |
. . . . . 6
|
| 28 | eqeq2 2217 |
. . . . . 6
| |
| 29 | 27, 28 | imbi12d 234 |
. . . . 5
|
| 30 | vex 2779 |
. . . . . 6
| |
| 31 | 2, 30 | preqr2 3823 |
. . . . 5
|
| 32 | 29, 31 | vtoclg 2838 |
. . . 4
|
| 33 | 9, 25, 32 | sylc 62 |
. . 3
|
| 34 | 3, 33 | jca 306 |
. 2
|
| 35 | opeq12 3835 |
. 2
| |
| 36 | 34, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: opthg 4300 otth2 4303 copsexg 4306 copsex4g 4309 opcom 4313 moop2 4314 opelopabsbALT 4323 opelopabsb 4324 ralxpf 4842 rexxpf 4843 cnvcnvsn 5178 funopg 5324 funinsn 5342 brabvv 6014 xpdom2 6951 xpf1o 6966 djuf1olem 7181 enq0ref 7581 enq0tr 7582 mulnnnq0 7598 eqresr 7984 cnref1o 9807 fisumcom2 11864 fprodcom2fi 12052 qredeu 12534 fnpr2ob 13287 |
| Copyright terms: Public domain | W3C validator |