| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opth1 | Unicode version | ||
| Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| opth1.1 | 
 | 
| opth1.2 | 
 | 
| Ref | Expression | 
|---|---|
| opth1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opth1.1 | 
. . . 4
 | |
| 2 | 1 | sneqr 3790 | 
. . 3
 | 
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | opth1.2 | 
. . . . . . . . 9
 | |
| 5 | 1, 4 | opi1 4265 | 
. . . . . . . 8
 | 
| 6 | id 19 | 
. . . . . . . 8
 | |
| 7 | 5, 6 | eleqtrid 2285 | 
. . . . . . 7
 | 
| 8 | oprcl 3832 | 
. . . . . . 7
 | |
| 9 | 7, 8 | syl 14 | 
. . . . . 6
 | 
| 10 | 9 | simpld 112 | 
. . . . 5
 | 
| 11 | prid1g 3726 | 
. . . . 5
 | |
| 12 | 10, 11 | syl 14 | 
. . . 4
 | 
| 13 | eleq2 2260 | 
. . . 4
 | |
| 14 | 12, 13 | syl5ibrcom 157 | 
. . 3
 | 
| 15 | elsni 3640 | 
. . . 4
 | |
| 16 | 15 | eqcomd 2202 | 
. . 3
 | 
| 17 | 14, 16 | syl6 33 | 
. 2
 | 
| 18 | dfopg 3806 | 
. . . . 5
 | |
| 19 | 7, 8, 18 | 3syl 17 | 
. . . 4
 | 
| 20 | 7, 19 | eleqtrd 2275 | 
. . 3
 | 
| 21 | elpri 3645 | 
. . 3
 | |
| 22 | 20, 21 | syl 14 | 
. 2
 | 
| 23 | 3, 17, 22 | mpjaod 719 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: opth 4270 dmsnopg 5141 funcnvsn 5303 oprabid 5954 fnpr2ob 12983 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |