Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opth1 | Unicode version |
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opth1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 | |
2 | 1 | sneqr 3747 | . . 3 |
3 | 2 | a1i 9 | . 2 |
4 | opth1.2 | . . . . . . . . 9 | |
5 | 1, 4 | opi1 4217 | . . . . . . . 8 |
6 | id 19 | . . . . . . . 8 | |
7 | 5, 6 | eleqtrid 2259 | . . . . . . 7 |
8 | oprcl 3789 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | 9 | simpld 111 | . . . . 5 |
11 | prid1g 3687 | . . . . 5 | |
12 | 10, 11 | syl 14 | . . . 4 |
13 | eleq2 2234 | . . . 4 | |
14 | 12, 13 | syl5ibrcom 156 | . . 3 |
15 | elsni 3601 | . . . 4 | |
16 | 15 | eqcomd 2176 | . . 3 |
17 | 14, 16 | syl6 33 | . 2 |
18 | dfopg 3763 | . . . . 5 | |
19 | 7, 8, 18 | 3syl 17 | . . . 4 |
20 | 7, 19 | eleqtrd 2249 | . . 3 |
21 | elpri 3606 | . . 3 | |
22 | 20, 21 | syl 14 | . 2 |
23 | 3, 17, 22 | mpjaod 713 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 cvv 2730 csn 3583 cpr 3584 cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opth 4222 dmsnopg 5082 funcnvsn 5243 oprabid 5885 pwle2 14031 |
Copyright terms: Public domain | W3C validator |