Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opth1 | Unicode version |
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | |
opth1.2 |
Ref | Expression |
---|---|
opth1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 | |
2 | 1 | sneqr 3740 | . . 3 |
3 | 2 | a1i 9 | . 2 |
4 | opth1.2 | . . . . . . . . 9 | |
5 | 1, 4 | opi1 4210 | . . . . . . . 8 |
6 | id 19 | . . . . . . . 8 | |
7 | 5, 6 | eleqtrid 2255 | . . . . . . 7 |
8 | oprcl 3782 | . . . . . . 7 | |
9 | 7, 8 | syl 14 | . . . . . 6 |
10 | 9 | simpld 111 | . . . . 5 |
11 | prid1g 3680 | . . . . 5 | |
12 | 10, 11 | syl 14 | . . . 4 |
13 | eleq2 2230 | . . . 4 | |
14 | 12, 13 | syl5ibrcom 156 | . . 3 |
15 | elsni 3594 | . . . 4 | |
16 | 15 | eqcomd 2171 | . . 3 |
17 | 14, 16 | syl6 33 | . 2 |
18 | dfopg 3756 | . . . . 5 | |
19 | 7, 8, 18 | 3syl 17 | . . . 4 |
20 | 7, 19 | eleqtrd 2245 | . . 3 |
21 | elpri 3599 | . . 3 | |
22 | 20, 21 | syl 14 | . 2 |
23 | 3, 17, 22 | mpjaod 708 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cvv 2726 csn 3576 cpr 3577 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opth 4215 dmsnopg 5075 funcnvsn 5233 oprabid 5874 pwle2 13878 |
Copyright terms: Public domain | W3C validator |