| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opth1 | Unicode version | ||
| Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 |
|
| opth1.2 |
|
| Ref | Expression |
|---|---|
| opth1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 |
. . . 4
| |
| 2 | 1 | sneqr 3838 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | opth1.2 |
. . . . . . . . 9
| |
| 5 | 1, 4 | opi1 4318 |
. . . . . . . 8
|
| 6 | id 19 |
. . . . . . . 8
| |
| 7 | 5, 6 | eleqtrid 2318 |
. . . . . . 7
|
| 8 | oprcl 3881 |
. . . . . . 7
| |
| 9 | 7, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | simpld 112 |
. . . . 5
|
| 11 | prid1g 3770 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | eleq2 2293 |
. . . 4
| |
| 14 | 12, 13 | syl5ibrcom 157 |
. . 3
|
| 15 | elsni 3684 |
. . . 4
| |
| 16 | 15 | eqcomd 2235 |
. . 3
|
| 17 | 14, 16 | syl6 33 |
. 2
|
| 18 | dfopg 3855 |
. . . . 5
| |
| 19 | 7, 8, 18 | 3syl 17 |
. . . 4
|
| 20 | 7, 19 | eleqtrd 2308 |
. . 3
|
| 21 | elpri 3689 |
. . 3
| |
| 22 | 20, 21 | syl 14 |
. 2
|
| 23 | 3, 17, 22 | mpjaod 723 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opth 4323 dmsnopg 5200 funcnvsn 5366 oprabid 6033 fnpr2ob 13373 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |