ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc Unicode version

Theorem eqelsuc 4454
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
eqelsuc  |-  ( A  =  B  ->  A  e.  suc  B )

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3  |-  A  e. 
_V
21sucid 4452 . 2  |-  A  e. 
suc  A
3 suceq 4437 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
42, 3eleqtrid 2285 1  |-  ( A  =  B  ->  A  e.  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-suc 4406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator