ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc Unicode version

Theorem eqelsuc 4413
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
eqelsuc  |-  ( A  =  B  ->  A  e.  suc  B )

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3  |-  A  e. 
_V
21sucid 4411 . 2  |-  A  e. 
suc  A
3 suceq 4396 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
42, 3eleqtrid 2264 1  |-  ( A  =  B  ->  A  e.  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735   suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-suc 4365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator