ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc Unicode version

Theorem eqelsuc 4484
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
eqelsuc  |-  ( A  =  B  ->  A  e.  suc  B )

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3  |-  A  e. 
_V
21sucid 4482 . 2  |-  A  e. 
suc  A
3 suceq 4467 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
42, 3eleqtrid 2296 1  |-  ( A  =  B  ->  A  e.  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator