![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 |
![]() ![]() ![]() ![]() |
eqeltrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2191 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrid 2274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: dmrnssfld 4902 cnvexg 5178 opabbrex 5932 offval 6104 resfunexgALT 6123 abrexexg 6133 abrexex2g 6135 opabex3d 6136 oprssdmm 6186 unfidisj 6935 ssfii 6987 djuexb 7057 nqprlu 7560 iccshftr 10008 iccshftl 10010 iccdil 10012 icccntr 10014 mertenslem2 11558 exprmfct 12152 infpnlem1 12371 ennnfonelemg 12418 grpidvalg 12811 grppropstrg 12925 releqgg 13120 eqgex 13121 0opn 13859 difopn 13961 tgrest 14022 txbasex 14110 txdis1cn 14131 cnmptid 14134 cnmptc 14135 cnmpt1st 14141 cnmpt2nd 14142 cnmpt2c 14143 hmeoima 14163 hmeocld 14165 fsumcncntop 14409 |
Copyright terms: Public domain | W3C validator |