| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| eqeltrrid.1 | 
 | 
| eqeltrrid.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqeltrrid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeltrrid.1 | 
. . 3
 | |
| 2 | 1 | eqcomi 2200 | 
. 2
 | 
| 3 | eqeltrrid.2 | 
. 2
 | |
| 4 | 2, 3 | eqeltrid 2283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: dmrnssfld 4929 cnvexg 5207 opabbrex 5966 offval 6143 resfunexgALT 6165 abrexexg 6175 abrexex2g 6177 opabex3d 6178 oprssdmm 6229 unfidisj 6983 residfi 7006 ssfii 7040 djuexb 7110 nqprlu 7614 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 mertenslem2 11701 exprmfct 12306 infpnlem1 12528 4sqlem13m 12572 ennnfonelemg 12620 grpidvalg 13016 igsumvalx 13032 grppropstrg 13151 releqgg 13350 eqgex 13351 0opn 14242 difopn 14344 tgrest 14405 txbasex 14493 txdis1cn 14514 cnmptid 14517 cnmptc 14518 cnmpt1st 14524 cnmpt2nd 14525 cnmpt2c 14526 hmeoima 14546 hmeocld 14548 fsumcncntop 14803 expcn 14805 plycoeid3 14993 | 
| Copyright terms: Public domain | W3C validator |