![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 |
![]() ![]() ![]() ![]() |
eqeltrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrid 2280 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: dmrnssfld 4925 cnvexg 5203 opabbrex 5962 offval 6138 resfunexgALT 6160 abrexexg 6170 abrexex2g 6172 opabex3d 6173 oprssdmm 6224 unfidisj 6978 residfi 6999 ssfii 7033 djuexb 7103 nqprlu 7607 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 mertenslem2 11679 exprmfct 12276 infpnlem1 12497 4sqlem13m 12541 ennnfonelemg 12560 grpidvalg 12956 igsumvalx 12972 grppropstrg 13091 releqgg 13290 eqgex 13291 0opn 14174 difopn 14276 tgrest 14337 txbasex 14425 txdis1cn 14446 cnmptid 14449 cnmptc 14450 cnmpt1st 14456 cnmpt2nd 14457 cnmpt2c 14458 hmeoima 14478 hmeocld 14480 fsumcncntop 14724 |
Copyright terms: Public domain | W3C validator |