![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 |
![]() ![]() ![]() ![]() |
eqeltrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrid 2280 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: dmrnssfld 4926 cnvexg 5204 opabbrex 5963 offval 6140 resfunexgALT 6162 abrexexg 6172 abrexex2g 6174 opabex3d 6175 oprssdmm 6226 unfidisj 6980 residfi 7001 ssfii 7035 djuexb 7105 nqprlu 7609 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 mertenslem2 11682 exprmfct 12279 infpnlem1 12500 4sqlem13m 12544 ennnfonelemg 12563 grpidvalg 12959 igsumvalx 12975 grppropstrg 13094 releqgg 13293 eqgex 13294 0opn 14185 difopn 14287 tgrest 14348 txbasex 14436 txdis1cn 14457 cnmptid 14460 cnmptc 14461 cnmpt1st 14467 cnmpt2nd 14468 cnmpt2c 14469 hmeoima 14489 hmeocld 14491 fsumcncntop 14746 expcn 14748 |
Copyright terms: Public domain | W3C validator |