| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 |
|
| eqeltrrid.2 |
|
| Ref | Expression |
|---|---|
| eqeltrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqeltrrid.2 |
. 2
| |
| 4 | 2, 3 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: dmrnssfld 4942 cnvexg 5221 opabbrex 5991 offval 6168 resfunexgALT 6195 abrexexg 6205 abrexex2g 6207 opabex3d 6208 oprssdmm 6259 unfidisj 7021 residfi 7044 ssfii 7078 djuexb 7148 nqprlu 7662 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 mertenslem2 11880 exprmfct 12493 infpnlem1 12715 4sqlem13m 12759 ennnfonelemg 12807 prdsval 13138 prdsbaslemss 13139 grpidvalg 13238 igsumvalx 13254 grppropstrg 13384 releqgg 13589 eqgex 13590 0opn 14511 difopn 14613 tgrest 14674 txbasex 14762 txdis1cn 14783 cnmptid 14786 cnmptc 14787 cnmpt1st 14793 cnmpt2nd 14794 cnmpt2c 14795 hmeoima 14815 hmeocld 14817 fsumcncntop 15072 expcn 15074 plycoeid3 15262 |
| Copyright terms: Public domain | W3C validator |