| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 |
|
| eqeltrrid.2 |
|
| Ref | Expression |
|---|---|
| eqeltrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 |
. . 3
| |
| 2 | 1 | eqcomi 2233 |
. 2
|
| 3 | eqeltrrid.2 |
. 2
| |
| 4 | 2, 3 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: dmrnssfld 4987 cnvexg 5266 opabbrex 6048 offval 6226 resfunexgALT 6253 abrexexg 6263 abrexex2g 6265 opabex3d 6266 oprssdmm 6317 unfidisj 7084 residfi 7107 ssfii 7141 djuexb 7211 nqprlu 7734 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 mertenslem2 12047 exprmfct 12660 infpnlem1 12882 4sqlem13m 12926 ennnfonelemg 12974 prdsval 13306 prdsbaslemss 13307 grpidvalg 13406 igsumvalx 13422 grppropstrg 13552 releqgg 13757 eqgex 13758 0opn 14680 difopn 14782 tgrest 14843 txbasex 14931 txdis1cn 14952 cnmptid 14955 cnmptc 14956 cnmpt1st 14962 cnmpt2nd 14963 cnmpt2c 14964 hmeoima 14984 hmeocld 14986 fsumcncntop 15241 expcn 15243 plycoeid3 15431 |
| Copyright terms: Public domain | W3C validator |