Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 | |
eqeltrrid.2 |
Ref | Expression |
---|---|
eqeltrrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 | . . 3 | |
2 | 1 | eqcomi 2169 | . 2 |
3 | eqeltrrid.2 | . 2 | |
4 | 2, 3 | eqeltrid 2253 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: dmrnssfld 4867 cnvexg 5141 opabbrex 5886 offval 6057 resfunexgALT 6076 abrexexg 6086 abrexex2g 6088 opabex3d 6089 oprssdmm 6139 unfidisj 6887 ssfii 6939 djuexb 7009 nqprlu 7488 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 mertenslem2 11477 exprmfct 12070 infpnlem1 12289 ennnfonelemg 12336 grpidvalg 12604 0opn 12644 difopn 12748 tgrest 12809 txbasex 12897 txdis1cn 12918 cnmptid 12921 cnmptc 12922 cnmpt1st 12928 cnmpt2nd 12929 cnmpt2c 12930 hmeoima 12950 hmeocld 12952 fsumcncntop 13196 |
Copyright terms: Public domain | W3C validator |