Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnelirr | Unicode version |
Description: A natural number does not belong to itself. Version of elirr 4534 for natural numbers, which does not require ax-setind 4530. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnelirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3424 | . 2 | |
2 | df-suc 4365 | . . . . . 6 | |
3 | 2 | eleq2i 2242 | . . . . 5 |
4 | elun 3274 | . . . . . 6 | |
5 | bj-nntrans 14261 | . . . . . . . 8 | |
6 | sucssel 4418 | . . . . . . . 8 | |
7 | 5, 6 | syld 45 | . . . . . . 7 |
8 | vex 2738 | . . . . . . . . . 10 | |
9 | 8 | sucid 4411 | . . . . . . . . 9 |
10 | elsni 3607 | . . . . . . . . 9 | |
11 | 9, 10 | eleqtrid 2264 | . . . . . . . 8 |
12 | 11 | a1i 9 | . . . . . . 7 |
13 | 7, 12 | jaod 717 | . . . . . 6 |
14 | 4, 13 | biimtrid 152 | . . . . 5 |
15 | 3, 14 | biimtrid 152 | . . . 4 |
16 | 15 | con3d 631 | . . 3 |
17 | 16 | rgen 2528 | . 2 |
18 | ax-bdel 14131 | . . . 4 BOUNDED | |
19 | 18 | ax-bdn 14127 | . . 3 BOUNDED |
20 | nfv 1526 | . . 3 | |
21 | nfv 1526 | . . 3 | |
22 | nfv 1526 | . . 3 | |
23 | eleq1 2238 | . . . . . 6 | |
24 | eleq2 2239 | . . . . . 6 | |
25 | 23, 24 | bitrd 188 | . . . . 5 |
26 | 25 | notbid 667 | . . . 4 |
27 | 26 | biimprd 158 | . . 3 |
28 | elequ1 2150 | . . . . . 6 | |
29 | elequ2 2151 | . . . . . 6 | |
30 | 28, 29 | bitrd 188 | . . . . 5 |
31 | 30 | notbid 667 | . . . 4 |
32 | 31 | biimpd 144 | . . 3 |
33 | eleq1 2238 | . . . . . 6 | |
34 | eleq2 2239 | . . . . . 6 | |
35 | 33, 34 | bitrd 188 | . . . . 5 |
36 | 35 | notbid 667 | . . . 4 |
37 | 36 | biimprd 158 | . . 3 |
38 | nfcv 2317 | . . 3 | |
39 | nfv 1526 | . . 3 | |
40 | eleq1 2238 | . . . . . 6 | |
41 | eleq2 2239 | . . . . . 6 | |
42 | 40, 41 | bitrd 188 | . . . . 5 |
43 | 42 | notbid 667 | . . . 4 |
44 | 43 | biimpd 144 | . . 3 |
45 | 19, 20, 21, 22, 27, 32, 37, 38, 39, 44 | bj-bdfindisg 14258 | . 2 |
46 | 1, 17, 45 | mp2an 426 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 708 wceq 1353 wcel 2146 wral 2453 cun 3125 wss 3127 c0 3420 csn 3589 csuc 4359 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-nul 4124 ax-pr 4203 ax-un 4427 ax-bd0 14123 ax-bdor 14126 ax-bdn 14127 ax-bdal 14128 ax-bdex 14129 ax-bdeq 14130 ax-bdel 14131 ax-bdsb 14132 ax-bdsep 14194 ax-infvn 14251 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-bdc 14151 df-bj-ind 14237 |
This theorem is referenced by: bj-nnen2lp 14264 |
Copyright terms: Public domain | W3C validator |