Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnelirr Unicode version

Theorem bj-nnelirr 16088
Description: A natural number does not belong to itself. Version of elirr 4607 for natural numbers, which does not require ax-setind 4603. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnelirr  |-  ( A  e.  om  ->  -.  A  e.  A )

Proof of Theorem bj-nnelirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3472 . 2  |-  -.  (/)  e.  (/)
2 df-suc 4436 . . . . . 6  |-  suc  y  =  ( y  u. 
{ y } )
32eleq2i 2274 . . . . 5  |-  ( suc  y  e.  suc  y  <->  suc  y  e.  ( y  u.  { y } ) )
4 elun 3322 . . . . . 6  |-  ( suc  y  e.  ( y  u.  { y } )  <->  ( suc  y  e.  y  \/  suc  y  e.  { y } ) )
5 bj-nntrans 16086 . . . . . . . 8  |-  ( y  e.  om  ->  ( suc  y  e.  y  ->  suc  y  C_  y
) )
6 sucssel 4489 . . . . . . . 8  |-  ( y  e.  om  ->  ( suc  y  C_  y  -> 
y  e.  y ) )
75, 6syld 45 . . . . . . 7  |-  ( y  e.  om  ->  ( suc  y  e.  y  ->  y  e.  y ) )
8 vex 2779 . . . . . . . . . 10  |-  y  e. 
_V
98sucid 4482 . . . . . . . . 9  |-  y  e. 
suc  y
10 elsni 3661 . . . . . . . . 9  |-  ( suc  y  e.  { y }  ->  suc  y  =  y )
119, 10eleqtrid 2296 . . . . . . . 8  |-  ( suc  y  e.  { y }  ->  y  e.  y )
1211a1i 9 . . . . . . 7  |-  ( y  e.  om  ->  ( suc  y  e.  { y }  ->  y  e.  y ) )
137, 12jaod 719 . . . . . 6  |-  ( y  e.  om  ->  (
( suc  y  e.  y  \/  suc  y  e. 
{ y } )  ->  y  e.  y ) )
144, 13biimtrid 152 . . . . 5  |-  ( y  e.  om  ->  ( suc  y  e.  (
y  u.  { y } )  ->  y  e.  y ) )
153, 14biimtrid 152 . . . 4  |-  ( y  e.  om  ->  ( suc  y  e.  suc  y  ->  y  e.  y ) )
1615con3d 632 . . 3  |-  ( y  e.  om  ->  ( -.  y  e.  y  ->  -.  suc  y  e. 
suc  y ) )
1716rgen 2561 . 2  |-  A. y  e.  om  ( -.  y  e.  y  ->  -.  suc  y  e.  suc  y )
18 ax-bdel 15956 . . . 4  |- BOUNDED  x  e.  x
1918ax-bdn 15952 . . 3  |- BOUNDED  -.  x  e.  x
20 nfv 1552 . . 3  |-  F/ x  -.  (/)  e.  (/)
21 nfv 1552 . . 3  |-  F/ x  -.  y  e.  y
22 nfv 1552 . . 3  |-  F/ x  -.  suc  y  e.  suc  y
23 eleq1 2270 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  x  <->  (/)  e.  x
) )
24 eleq2 2271 . . . . . 6  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
2523, 24bitrd 188 . . . . 5  |-  ( x  =  (/)  ->  ( x  e.  x  <->  (/)  e.  (/) ) )
2625notbid 669 . . . 4  |-  ( x  =  (/)  ->  ( -.  x  e.  x  <->  -.  (/)  e.  (/) ) )
2726biimprd 158 . . 3  |-  ( x  =  (/)  ->  ( -.  (/)  e.  (/)  ->  -.  x  e.  x ) )
28 elequ1 2182 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  x ) )
29 elequ2 2183 . . . . . 6  |-  ( x  =  y  ->  (
y  e.  x  <->  y  e.  y ) )
3028, 29bitrd 188 . . . . 5  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
3130notbid 669 . . . 4  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
3231biimpd 144 . . 3  |-  ( x  =  y  ->  ( -.  x  e.  x  ->  -.  y  e.  y ) )
33 eleq1 2270 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  e.  x  <->  suc  y  e.  x ) )
34 eleq2 2271 . . . . . 6  |-  ( x  =  suc  y  -> 
( suc  y  e.  x 
<->  suc  y  e.  suc  y ) )
3533, 34bitrd 188 . . . . 5  |-  ( x  =  suc  y  -> 
( x  e.  x  <->  suc  y  e.  suc  y
) )
3635notbid 669 . . . 4  |-  ( x  =  suc  y  -> 
( -.  x  e.  x  <->  -.  suc  y  e. 
suc  y ) )
3736biimprd 158 . . 3  |-  ( x  =  suc  y  -> 
( -.  suc  y  e.  suc  y  ->  -.  x  e.  x )
)
38 nfcv 2350 . . 3  |-  F/_ x A
39 nfv 1552 . . 3  |-  F/ x  -.  A  e.  A
40 eleq1 2270 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  x  <->  A  e.  x ) )
41 eleq2 2271 . . . . . 6  |-  ( x  =  A  ->  ( A  e.  x  <->  A  e.  A ) )
4240, 41bitrd 188 . . . . 5  |-  ( x  =  A  ->  (
x  e.  x  <->  A  e.  A ) )
4342notbid 669 . . . 4  |-  ( x  =  A  ->  ( -.  x  e.  x  <->  -.  A  e.  A ) )
4443biimpd 144 . . 3  |-  ( x  =  A  ->  ( -.  x  e.  x  ->  -.  A  e.  A
) )
4519, 20, 21, 22, 27, 32, 37, 38, 39, 44bj-bdfindisg 16083 . 2  |-  ( ( -.  (/)  e.  (/)  /\  A. y  e.  om  ( -.  y  e.  y  ->  -.  suc  y  e. 
suc  y ) )  ->  ( A  e. 
om  ->  -.  A  e.  A ) )
461, 17, 45mp2an 426 1  |-  ( A  e.  om  ->  -.  A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdn 15952  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-infvn 16076
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-nnen2lp  16089
  Copyright terms: Public domain W3C validator