ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin3 Unicode version

Theorem elin3 3364
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin3.x  |-  X  =  ( ( B  i^i  C )  i^i  D )
Assertion
Ref Expression
elin3  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D ) )

Proof of Theorem elin3
StepHypRef Expression
1 elin 3356 . . 3  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
21anbi1i 458 . 2  |-  ( ( A  e.  ( B  i^i  C )  /\  A  e.  D )  <->  ( ( A  e.  B  /\  A  e.  C
)  /\  A  e.  D ) )
3 elin3.x . . 3  |-  X  =  ( ( B  i^i  C )  i^i  D )
43elin2 3361 . 2  |-  ( A  e.  X  <->  ( A  e.  ( B  i^i  C
)  /\  A  e.  D ) )
5 df-3an 983 . 2  |-  ( ( A  e.  B  /\  A  e.  C  /\  A  e.  D )  <->  ( ( A  e.  B  /\  A  e.  C
)  /\  A  e.  D ) )
62, 4, 53bitr4i 212 1  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator