ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin3 Unicode version

Theorem elin3 3313
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin3.x  |-  X  =  ( ( B  i^i  C )  i^i  D )
Assertion
Ref Expression
elin3  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D ) )

Proof of Theorem elin3
StepHypRef Expression
1 elin 3305 . . 3  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
21anbi1i 454 . 2  |-  ( ( A  e.  ( B  i^i  C )  /\  A  e.  D )  <->  ( ( A  e.  B  /\  A  e.  C
)  /\  A  e.  D ) )
3 elin3.x . . 3  |-  X  =  ( ( B  i^i  C )  i^i  D )
43elin2 3310 . 2  |-  ( A  e.  X  <->  ( A  e.  ( B  i^i  C
)  /\  A  e.  D ) )
5 df-3an 970 . 2  |-  ( ( A  e.  B  /\  A  e.  C  /\  A  e.  D )  <->  ( ( A  e.  B  /\  A  e.  C
)  /\  A  e.  D ) )
62, 4, 53bitr4i 211 1  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator