ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres Unicode version

Theorem lmres 12888
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmres.4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
lmres.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmres  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )

Proof of Theorem lmres
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponmax 12663 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
4 cnex 7877 . . . . . 6  |-  CC  e.  _V
5 ssid 3162 . . . . . . 7  |-  X  C_  X
6 uzssz 9485 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
7 zsscn 9199 . . . . . . . 8  |-  ZZ  C_  CC
86, 7sstri 3151 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
9 pmss12g 6641 . . . . . . 7  |-  ( ( ( X  C_  X  /\  ( ZZ>= `  M )  C_  CC )  /\  ( X  e.  J  /\  CC  e.  _V ) )  ->  ( X  ^pm  ( ZZ>= `  M )
)  C_  ( X  ^pm  CC ) )
105, 8, 9mpanl12 433 . . . . . 6  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
113, 4, 10sylancl 410 . . . . 5  |-  ( ph  ->  ( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
12 zex 9200 . . . . . . 7  |-  ZZ  e.  _V
1312, 6ssexi 4120 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
14 lmres.4 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
15 pmresg 6642 . . . . . 6  |-  ( ( ( ZZ>= `  M )  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  ( ZZ>= `  M ) ) )
1613, 14, 15sylancr 411 . . . . 5  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  ( ZZ>= `  M )
) )
1711, 16sseldd 3143 . . . 4  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  CC ) )
1817, 142thd 174 . . 3  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  <->  F  e.  ( X  ^pm  CC ) ) )
19 eqid 2165 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2019uztrn2 9483 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  M )
)
21 dmres 4905 . . . . . . . . . . . 12  |-  dom  ( F  |`  ( ZZ>= `  M
) )  =  ( ( ZZ>= `  M )  i^i  dom  F )
2221elin2 3310 . . . . . . . . . . 11  |-  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  ( k  e.  ( ZZ>= `  M )  /\  k  e.  dom  F ) )
2322baib 909 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  k  e.  dom  F ) )
24 fvres 5510 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  =  ( F `
 k ) )
2524eleq1d 2235 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u  <->  ( F `  k )  e.  u
) )
2623, 25anbi12d 465 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2720, 26syl 14 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2827ralbidva 2462 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
2928rexbiia 2481 . . . . . 6  |-  ( E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u )  <->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )
3029imbi2i 225 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  ( ZZ>=
`  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) )  <->  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3130ralbii 2472 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3231a1i 9 . . 3  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
3318, 323anbi13d 1304 . 2  |-  ( ph  ->  ( ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
34 lmres.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
351, 19, 34lmbr2 12854 . 2  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P  <->  ( ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) ) ) ) )
361, 19, 34lmbr2 12854 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
3733, 35, 363bitr4rd 220 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   dom cdm 4604    |` cres 4606   ` cfv 5188  (class class class)co 5842    ^pm cpm 6615   CCcc 7751   ZZcz 9191   ZZ>=cuz 9466  TopOnctopon 12648   ~~> tclm 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-top 12636  df-topon 12649  df-lm 12830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator