ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres Unicode version

Theorem lmres 13042
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmres.4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
lmres.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmres  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )

Proof of Theorem lmres
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponmax 12817 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
4 cnex 7898 . . . . . 6  |-  CC  e.  _V
5 ssid 3167 . . . . . . 7  |-  X  C_  X
6 uzssz 9506 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
7 zsscn 9220 . . . . . . . 8  |-  ZZ  C_  CC
86, 7sstri 3156 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
9 pmss12g 6653 . . . . . . 7  |-  ( ( ( X  C_  X  /\  ( ZZ>= `  M )  C_  CC )  /\  ( X  e.  J  /\  CC  e.  _V ) )  ->  ( X  ^pm  ( ZZ>= `  M )
)  C_  ( X  ^pm  CC ) )
105, 8, 9mpanl12 434 . . . . . 6  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
113, 4, 10sylancl 411 . . . . 5  |-  ( ph  ->  ( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
12 zex 9221 . . . . . . 7  |-  ZZ  e.  _V
1312, 6ssexi 4127 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
14 lmres.4 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
15 pmresg 6654 . . . . . 6  |-  ( ( ( ZZ>= `  M )  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  ( ZZ>= `  M ) ) )
1613, 14, 15sylancr 412 . . . . 5  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  ( ZZ>= `  M )
) )
1711, 16sseldd 3148 . . . 4  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  CC ) )
1817, 142thd 174 . . 3  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  <->  F  e.  ( X  ^pm  CC ) ) )
19 eqid 2170 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2019uztrn2 9504 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  M )
)
21 dmres 4912 . . . . . . . . . . . 12  |-  dom  ( F  |`  ( ZZ>= `  M
) )  =  ( ( ZZ>= `  M )  i^i  dom  F )
2221elin2 3315 . . . . . . . . . . 11  |-  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  ( k  e.  ( ZZ>= `  M )  /\  k  e.  dom  F ) )
2322baib 914 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  k  e.  dom  F ) )
24 fvres 5520 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  =  ( F `
 k ) )
2524eleq1d 2239 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u  <->  ( F `  k )  e.  u
) )
2623, 25anbi12d 470 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2720, 26syl 14 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2827ralbidva 2466 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
2928rexbiia 2485 . . . . . 6  |-  ( E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u )  <->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )
3029imbi2i 225 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  ( ZZ>=
`  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) )  <->  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3130ralbii 2476 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3231a1i 9 . . 3  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
3318, 323anbi13d 1309 . 2  |-  ( ph  ->  ( ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
34 lmres.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
351, 19, 34lmbr2 13008 . 2  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P  <->  ( ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) ) ) ) )
361, 19, 34lmbr2 13008 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
3733, 35, 363bitr4rd 220 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730    C_ wss 3121   class class class wbr 3989   dom cdm 4611    |` cres 4613   ` cfv 5198  (class class class)co 5853    ^pm cpm 6627   CCcc 7772   ZZcz 9212   ZZ>=cuz 9487  TopOnctopon 12802   ~~> tclm 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-top 12790  df-topon 12803  df-lm 12984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator