ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres Unicode version

Theorem lmres 14416
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmres.4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
lmres.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmres  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )

Proof of Theorem lmres
Dummy variables  j  k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponmax 14193 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
4 cnex 7996 . . . . . 6  |-  CC  e.  _V
5 ssid 3199 . . . . . . 7  |-  X  C_  X
6 uzssz 9612 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
7 zsscn 9325 . . . . . . . 8  |-  ZZ  C_  CC
86, 7sstri 3188 . . . . . . 7  |-  ( ZZ>= `  M )  C_  CC
9 pmss12g 6729 . . . . . . 7  |-  ( ( ( X  C_  X  /\  ( ZZ>= `  M )  C_  CC )  /\  ( X  e.  J  /\  CC  e.  _V ) )  ->  ( X  ^pm  ( ZZ>= `  M )
)  C_  ( X  ^pm  CC ) )
105, 8, 9mpanl12 436 . . . . . 6  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
113, 4, 10sylancl 413 . . . . 5  |-  ( ph  ->  ( X  ^pm  ( ZZ>=
`  M ) ) 
C_  ( X  ^pm  CC ) )
12 zex 9326 . . . . . . 7  |-  ZZ  e.  _V
1312, 6ssexi 4167 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
14 lmres.4 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
15 pmresg 6730 . . . . . 6  |-  ( ( ( ZZ>= `  M )  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  ( ZZ>= `  M ) ) )
1613, 14, 15sylancr 414 . . . . 5  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  ( ZZ>= `  M )
) )
1711, 16sseldd 3180 . . . 4  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  M ) )  e.  ( X  ^pm  CC ) )
1817, 142thd 175 . . 3  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  <->  F  e.  ( X  ^pm  CC ) ) )
19 eqid 2193 . . . . . . . . . 10  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2019uztrn2 9610 . . . . . . . . 9  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  M )
)
21 dmres 4963 . . . . . . . . . . . 12  |-  dom  ( F  |`  ( ZZ>= `  M
) )  =  ( ( ZZ>= `  M )  i^i  dom  F )
2221elin2 3347 . . . . . . . . . . 11  |-  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  ( k  e.  ( ZZ>= `  M )  /\  k  e.  dom  F ) )
2322baib 920 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  <->  k  e.  dom  F ) )
24 fvres 5578 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  =  ( F `
 k ) )
2524eleq1d 2262 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u  <->  ( F `  k )  e.  u
) )
2623, 25anbi12d 473 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2720, 26syl 14 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2827ralbidva 2490 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
2928rexbiia 2509 . . . . . 6  |-  ( E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u )  <->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )
3029imbi2i 226 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  ( ZZ>=
`  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) )  <->  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3130ralbii 2500 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  ( ZZ>= `  M ) )  /\  ( ( F  |`  ( ZZ>= `  M )
) `  k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
3231a1i 9 . . 3  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
3318, 323anbi13d 1325 . 2  |-  ( ph  ->  ( ( ( F  |`  ( ZZ>= `  M )
)  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ( ZZ>= `  M ) A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M
) )  /\  (
( F  |`  ( ZZ>=
`  M ) ) `
 k )  e.  u ) ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
34 lmres.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
351, 19, 34lmbr2 14382 . 2  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P  <->  ( ( F  |`  ( ZZ>= `  M
) )  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  ( ZZ>= `  M )
)  /\  ( ( F  |`  ( ZZ>= `  M
) ) `  k
)  e.  u ) ) ) ) )
361, 19, 34lmbr2 14382 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  (
ZZ>= `  M ) A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
3733, 35, 363bitr4rd 221 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M )
) ( ~~> t `  J ) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   class class class wbr 4029   dom cdm 4659    |` cres 4661   ` cfv 5254  (class class class)co 5918    ^pm cpm 6703   CCcc 7870   ZZcz 9317   ZZ>=cuz 9592  TopOnctopon 14178   ~~> tclm 14355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pm 6705  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-top 14166  df-topon 14179  df-lm 14358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator