ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnres Unicode version

Theorem fnres 5440
Description: An equivalence for functionality of a restriction. Compare dffun8 5346. (Contributed by Mario Carneiro, 20-May-2015.)
Assertion
Ref Expression
fnres  |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F
y )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fnres
StepHypRef Expression
1 ancom 266 . . 3  |-  ( ( A. x  e.  A  E* y  x F
y  /\  A. x  e.  A  E. y  x F y )  <->  ( A. x  e.  A  E. y  x F y  /\  A. x  e.  A  E* y  x F y ) )
2 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
32brres 5011 . . . . . . . . 9  |-  ( x ( F  |`  A ) y  <->  ( x F y  /\  x  e.  A ) )
4 ancom 266 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  A )  <->  ( x  e.  A  /\  x F y ) )
53, 4bitri 184 . . . . . . . 8  |-  ( x ( F  |`  A ) y  <->  ( x  e.  A  /\  x F y ) )
65mobii 2114 . . . . . . 7  |-  ( E* y  x ( F  |`  A ) y  <->  E* y
( x  e.  A  /\  x F y ) )
7 moanimv 2153 . . . . . . 7  |-  ( E* y ( x  e.  A  /\  x F y )  <->  ( x  e.  A  ->  E* y  x F y ) )
86, 7bitri 184 . . . . . 6  |-  ( E* y  x ( F  |`  A ) y  <->  ( x  e.  A  ->  E* y  x F y ) )
98albii 1516 . . . . 5  |-  ( A. x E* y  x ( F  |`  A )
y  <->  A. x ( x  e.  A  ->  E* y  x F y ) )
10 relres 5033 . . . . . 6  |-  Rel  ( F  |`  A )
11 dffun6 5332 . . . . . 6  |-  ( Fun  ( F  |`  A )  <-> 
( Rel  ( F  |`  A )  /\  A. x E* y  x ( F  |`  A )
y ) )
1210, 11mpbiran 946 . . . . 5  |-  ( Fun  ( F  |`  A )  <->  A. x E* y  x ( F  |`  A ) y )
13 df-ral 2513 . . . . 5  |-  ( A. x  e.  A  E* y  x F y  <->  A. x
( x  e.  A  ->  E* y  x F y ) )
149, 12, 133bitr4i 212 . . . 4  |-  ( Fun  ( F  |`  A )  <->  A. x  e.  A  E* y  x F
y )
15 dmres 5026 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
16 inss1 3424 . . . . . . 7  |-  ( A  i^i  dom  F )  C_  A
1715, 16eqsstri 3256 . . . . . 6  |-  dom  ( F  |`  A )  C_  A
18 eqss 3239 . . . . . 6  |-  ( dom  ( F  |`  A )  =  A  <->  ( dom  ( F  |`  A ) 
C_  A  /\  A  C_ 
dom  ( F  |`  A ) ) )
1917, 18mpbiran 946 . . . . 5  |-  ( dom  ( F  |`  A )  =  A  <->  A  C_  dom  ( F  |`  A ) )
20 dfss3 3213 . . . . . 6  |-  ( A 
C_  dom  ( F  |`  A )  <->  A. x  e.  A  x  e.  dom  ( F  |`  A ) )
2115elin2 3392 . . . . . . . . 9  |-  ( x  e.  dom  ( F  |`  A )  <->  ( x  e.  A  /\  x  e.  dom  F ) )
2221baib 924 . . . . . . . 8  |-  ( x  e.  A  ->  (
x  e.  dom  ( F  |`  A )  <->  x  e.  dom  F ) )
23 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
2423eldm 4920 . . . . . . . 8  |-  ( x  e.  dom  F  <->  E. y  x F y )
2522, 24bitrdi 196 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  dom  ( F  |`  A )  <->  E. y  x F y ) )
2625ralbiia 2544 . . . . . 6  |-  ( A. x  e.  A  x  e.  dom  ( F  |`  A )  <->  A. x  e.  A  E. y  x F y )
2720, 26bitri 184 . . . . 5  |-  ( A 
C_  dom  ( F  |`  A )  <->  A. x  e.  A  E. y  x F y )
2819, 27bitri 184 . . . 4  |-  ( dom  ( F  |`  A )  =  A  <->  A. x  e.  A  E. y  x F y )
2914, 28anbi12i 460 . . 3  |-  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  <->  ( A. x  e.  A  E* y  x F y  /\  A. x  e.  A  E. y  x F y ) )
30 r19.26 2657 . . 3  |-  ( A. x  e.  A  ( E. y  x F
y  /\  E* y  x F y )  <->  ( A. x  e.  A  E. y  x F y  /\  A. x  e.  A  E* y  x F y ) )
311, 29, 303bitr4i 212 . 2  |-  ( ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A )  <->  A. x  e.  A  ( E. y  x F y  /\  E* y  x F
y ) )
32 df-fn 5321 . 2  |-  ( ( F  |`  A )  Fn  A  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
33 eu5 2125 . . 3  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
3433ralbii 2536 . 2  |-  ( A. x  e.  A  E! y  x F y  <->  A. x  e.  A  ( E. y  x F y  /\  E* y  x F
y ) )
3531, 32, 343bitr4i 212 1  |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538   E!weu 2077   E*wmo 2078    e. wcel 2200   A.wral 2508    i^i cin 3196    C_ wss 3197   class class class wbr 4083   dom cdm 4719    |` cres 4721   Rel wrel 4724   Fun wfun 5312    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  f1ompt  5786
  Copyright terms: Public domain W3C validator