Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnres | Unicode version |
Description: An equivalence for functionality of a restriction. Compare dffun8 5216. (Contributed by Mario Carneiro, 20-May-2015.) |
Ref | Expression |
---|---|
fnres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 | |
2 | vex 2729 | . . . . . . . . . 10 | |
3 | 2 | brres 4890 | . . . . . . . . 9 |
4 | ancom 264 | . . . . . . . . 9 | |
5 | 3, 4 | bitri 183 | . . . . . . . 8 |
6 | 5 | mobii 2051 | . . . . . . 7 |
7 | moanimv 2089 | . . . . . . 7 | |
8 | 6, 7 | bitri 183 | . . . . . 6 |
9 | 8 | albii 1458 | . . . . 5 |
10 | relres 4912 | . . . . . 6 | |
11 | dffun6 5202 | . . . . . 6 | |
12 | 10, 11 | mpbiran 930 | . . . . 5 |
13 | df-ral 2449 | . . . . 5 | |
14 | 9, 12, 13 | 3bitr4i 211 | . . . 4 |
15 | dmres 4905 | . . . . . . 7 | |
16 | inss1 3342 | . . . . . . 7 | |
17 | 15, 16 | eqsstri 3174 | . . . . . 6 |
18 | eqss 3157 | . . . . . 6 | |
19 | 17, 18 | mpbiran 930 | . . . . 5 |
20 | dfss3 3132 | . . . . . 6 | |
21 | 15 | elin2 3310 | . . . . . . . . 9 |
22 | 21 | baib 909 | . . . . . . . 8 |
23 | vex 2729 | . . . . . . . . 9 | |
24 | 23 | eldm 4801 | . . . . . . . 8 |
25 | 22, 24 | bitrdi 195 | . . . . . . 7 |
26 | 25 | ralbiia 2480 | . . . . . 6 |
27 | 20, 26 | bitri 183 | . . . . 5 |
28 | 19, 27 | bitri 183 | . . . 4 |
29 | 14, 28 | anbi12i 456 | . . 3 |
30 | r19.26 2592 | . . 3 | |
31 | 1, 29, 30 | 3bitr4i 211 | . 2 |
32 | df-fn 5191 | . 2 | |
33 | eu5 2061 | . . 3 | |
34 | 33 | ralbii 2472 | . 2 |
35 | 31, 32, 34 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wmo 2015 wcel 2136 wral 2444 cin 3115 wss 3116 class class class wbr 3982 cdm 4604 cres 4606 wrel 4609 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-fun 5190 df-fn 5191 |
This theorem is referenced by: f1ompt 5636 |
Copyright terms: Public domain | W3C validator |