ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima Unicode version

Theorem funfvima 5816
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 4980 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21elin2 3361 . . . . . 6  |-  ( B  e.  dom  ( F  |`  A )  <->  ( B  e.  A  /\  B  e. 
dom  F ) )
3 funres 5312 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
4 fvelrn 5711 . . . . . . . . 9  |-  ( ( Fun  ( F  |`  A )  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
53, 4sylan 283 . . . . . . . 8  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
6 df-ima 4688 . . . . . . . . . 10  |-  ( F
" A )  =  ran  ( F  |`  A )
76eleq2i 2272 . . . . . . . . 9  |-  ( ( F `  B )  e.  ( F " A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) )
8 fvres 5600 . . . . . . . . . 10  |-  ( B  e.  A  ->  (
( F  |`  A ) `
 B )  =  ( F `  B
) )
98eleq1d 2274 . . . . . . . . 9  |-  ( B  e.  A  ->  (
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) ) )
107, 9bitr4id 199 . . . . . . . 8  |-  ( B  e.  A  ->  (
( F `  B
)  e.  ( F
" A )  <->  ( ( F  |`  A ) `  B )  e.  ran  ( F  |`  A ) ) )
115, 10syl5ibrcom 157 . . . . . . 7  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
1211ex 115 . . . . . 6  |-  ( Fun 
F  ->  ( B  e.  dom  ( F  |`  A )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
132, 12biimtrrid 153 . . . . 5  |-  ( Fun 
F  ->  ( ( B  e.  A  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1413expd 258 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) ) ) )
1514com12 30 . . 3  |-  ( B  e.  A  ->  ( Fun  F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) ) )
1615impd 254 . 2  |-  ( B  e.  A  ->  (
( Fun  F  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1716pm2.43b 52 1  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   dom cdm 4675   ran crn 4676    |` cres 4677   "cima 4678   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  funfvima2  5817  fiintim  7028  caseinl  7193  caseinr  7194  ctssdccl  7213  suplocexprlemdisj  7833  suplocexprlemub  7836  swrdwrdsymbg  11117  ennnfonelemex  12785  ctinfomlemom  12798  txcnp  14743
  Copyright terms: Public domain W3C validator