ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima Unicode version

Theorem funfvima 5794
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 4967 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21elin2 3351 . . . . . 6  |-  ( B  e.  dom  ( F  |`  A )  <->  ( B  e.  A  /\  B  e. 
dom  F ) )
3 funres 5299 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
4 fvelrn 5693 . . . . . . . . 9  |-  ( ( Fun  ( F  |`  A )  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
53, 4sylan 283 . . . . . . . 8  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
6 df-ima 4676 . . . . . . . . . 10  |-  ( F
" A )  =  ran  ( F  |`  A )
76eleq2i 2263 . . . . . . . . 9  |-  ( ( F `  B )  e.  ( F " A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) )
8 fvres 5582 . . . . . . . . . 10  |-  ( B  e.  A  ->  (
( F  |`  A ) `
 B )  =  ( F `  B
) )
98eleq1d 2265 . . . . . . . . 9  |-  ( B  e.  A  ->  (
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) ) )
107, 9bitr4id 199 . . . . . . . 8  |-  ( B  e.  A  ->  (
( F `  B
)  e.  ( F
" A )  <->  ( ( F  |`  A ) `  B )  e.  ran  ( F  |`  A ) ) )
115, 10syl5ibrcom 157 . . . . . . 7  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
1211ex 115 . . . . . 6  |-  ( Fun 
F  ->  ( B  e.  dom  ( F  |`  A )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
132, 12biimtrrid 153 . . . . 5  |-  ( Fun 
F  ->  ( ( B  e.  A  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1413expd 258 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) ) ) )
1514com12 30 . . 3  |-  ( B  e.  A  ->  ( Fun  F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) ) )
1615impd 254 . 2  |-  ( B  e.  A  ->  (
( Fun  F  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1716pm2.43b 52 1  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   dom cdm 4663   ran crn 4664    |` cres 4665   "cima 4666   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funfvima2  5795  fiintim  6992  caseinl  7157  caseinr  7158  ctssdccl  7177  suplocexprlemdisj  7787  suplocexprlemub  7790  ennnfonelemex  12631  ctinfomlemom  12644  txcnp  14507
  Copyright terms: Public domain W3C validator