ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima Unicode version

Theorem funfvima 5601
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 4796 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21elin2 3228 . . . . . 6  |-  ( B  e.  dom  ( F  |`  A )  <->  ( B  e.  A  /\  B  e. 
dom  F ) )
3 funres 5120 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
4 fvelrn 5503 . . . . . . . . 9  |-  ( ( Fun  ( F  |`  A )  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
53, 4sylan 279 . . . . . . . 8  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
6 fvres 5397 . . . . . . . . . 10  |-  ( B  e.  A  ->  (
( F  |`  A ) `
 B )  =  ( F `  B
) )
76eleq1d 2181 . . . . . . . . 9  |-  ( B  e.  A  ->  (
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) ) )
8 df-ima 4510 . . . . . . . . . 10  |-  ( F
" A )  =  ran  ( F  |`  A )
98eleq2i 2179 . . . . . . . . 9  |-  ( ( F `  B )  e.  ( F " A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) )
107, 9syl6rbbr 198 . . . . . . . 8  |-  ( B  e.  A  ->  (
( F `  B
)  e.  ( F
" A )  <->  ( ( F  |`  A ) `  B )  e.  ran  ( F  |`  A ) ) )
115, 10syl5ibrcom 156 . . . . . . 7  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
1211ex 114 . . . . . 6  |-  ( Fun 
F  ->  ( B  e.  dom  ( F  |`  A )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
132, 12syl5bir 152 . . . . 5  |-  ( Fun 
F  ->  ( ( B  e.  A  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1413expd 256 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) ) ) )
1514com12 30 . . 3  |-  ( B  e.  A  ->  ( Fun  F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) ) )
1615impd 252 . 2  |-  ( B  e.  A  ->  (
( Fun  F  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1716pm2.43b 52 1  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1461   dom cdm 4497   ran crn 4498    |` cres 4499   "cima 4500   Fun wfun 5073   ` cfv 5079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-fv 5087
This theorem is referenced by:  funfvima2  5602  fiintim  6767  caseinl  6925  caseinr  6926  ctssdccl  6945  ennnfonelemex  11765  ctinfomlemom  11778  txcnp  12275
  Copyright terms: Public domain W3C validator