Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2 GIF version

Theorem elin2 3295
 Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2224 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3290 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 183 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128   ∩ cin 3101 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108 This theorem is referenced by:  elin3  3298  fnres  5285  funfvima  5695  lmres  12619
 Copyright terms: Public domain W3C validator