ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrabg Unicode version

Theorem elintrabg 3884
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    V( x)

Proof of Theorem elintrabg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . 2  |-  ( y  =  A  ->  (
y  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  e.  B  |  ph }
) )
2 eleq1 2256 . . . 4  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32imbi2d 230 . . 3  |-  ( y  =  A  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  A  e.  x ) ) )
43ralbidv 2494 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  ( ph  ->  y  e.  x )  <->  A. x  e.  B  ( ph  ->  A  e.  x ) ) )
5 vex 2763 . . 3  |-  y  e. 
_V
65elintrab 3883 . 2  |-  ( y  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  y  e.  x
) )
71, 4, 6vtoclbg 2822 1  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   |^|cint 3871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-int 3872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator