ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrabg Unicode version

Theorem elintrabg 3837
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    V( x)

Proof of Theorem elintrabg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . 2  |-  ( y  =  A  ->  (
y  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  e.  B  |  ph }
) )
2 eleq1 2229 . . . 4  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32imbi2d 229 . . 3  |-  ( y  =  A  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  A  e.  x ) ) )
43ralbidv 2466 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  ( ph  ->  y  e.  x )  <->  A. x  e.  B  ( ph  ->  A  e.  x ) ) )
5 vex 2729 . . 3  |-  y  e. 
_V
65elintrab 3836 . 2  |-  ( y  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  y  e.  x
) )
71, 4, 6vtoclbg 2787 1  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator