ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrabg Unicode version

Theorem elintrabg 3844
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    V( x)

Proof of Theorem elintrabg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . 2  |-  ( y  =  A  ->  (
y  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  e.  B  |  ph }
) )
2 eleq1 2233 . . . 4  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32imbi2d 229 . . 3  |-  ( y  =  A  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  A  e.  x ) ) )
43ralbidv 2470 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  ( ph  ->  y  e.  x )  <->  A. x  e.  B  ( ph  ->  A  e.  x ) ) )
5 vex 2733 . . 3  |-  y  e. 
_V
65elintrab 3843 . 2  |-  ( y  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  y  e.  x
) )
71, 4, 6vtoclbg 2791 1  |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-int 3832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator