![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintrabg | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
elintrabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | |
2 | eleq1 2240 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 230 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
4 | 3 | ralbidv 2477 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
5 | vex 2740 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | elintrab 3856 | . 2 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | vtoclbg 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {crab 2459 ∩ cint 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2739 df-int 3845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |