ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrabg GIF version

Theorem elintrabg 3887
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elintrabg (𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elintrabg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . 2 (𝑦 = 𝐴 → (𝑦 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥𝐵𝜑}))
2 eleq1 2259 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 230 . . 3 (𝑦 = 𝐴 → ((𝜑𝑦𝑥) ↔ (𝜑𝐴𝑥)))
43ralbidv 2497 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 (𝜑𝑦𝑥) ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
5 vex 2766 . . 3 𝑦 ∈ V
65elintrab 3886 . 2 (𝑦 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝑦𝑥))
71, 4, 6vtoclbg 2825 1 (𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wral 2475  {crab 2479   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-int 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator