Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elintrab | Unicode version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
Ref | Expression |
---|---|
inteqab.1 |
Ref | Expression |
---|---|
elintrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . . 4 | |
2 | 1 | elintab 3818 | . . 3 |
3 | impexp 261 | . . . 4 | |
4 | 3 | albii 1450 | . . 3 |
5 | 2, 4 | bitri 183 | . 2 |
6 | df-rab 2444 | . . . 4 | |
7 | 6 | inteqi 3811 | . . 3 |
8 | 7 | eleq2i 2224 | . 2 |
9 | df-ral 2440 | . 2 | |
10 | 5, 8, 9 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wcel 2128 cab 2143 wral 2435 crab 2439 cvv 2712 cint 3807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-int 3808 |
This theorem is referenced by: elintrabg 3820 intmin 3827 bj-indint 13466 |
Copyright terms: Public domain | W3C validator |