ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrab Unicode version

Theorem elintrab 3870
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintrab  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4  |-  A  e. 
_V
21elintab 3869 . . 3  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  e.  x ) )
3 impexp 263 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  e.  x )  <->  ( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
43albii 1480 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
52, 4bitri 184 . 2  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
6 df-rab 2476 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
76inteqi 3862 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
87eleq2i 2255 . 2  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  |  ( x  e.  B  /\  ph ) } )
9 df-ral 2472 . 2  |-  ( A. x  e.  B  ( ph  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
105, 8, 93bitr4i 212 1  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1361    e. wcel 2159   {cab 2174   A.wral 2467   {crab 2471   _Vcvv 2751   |^|cint 3858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rab 2476  df-v 2753  df-int 3859
This theorem is referenced by:  elintrabg  3871  intmin  3878  bj-indint  15066
  Copyright terms: Public domain W3C validator