ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 Unicode version

Theorem int0 3888
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0  |-  |^| (/)  =  _V

Proof of Theorem int0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . . . 6  |-  -.  y  e.  (/)
21pm2.21i 647 . . . . 5  |-  ( y  e.  (/)  ->  x  e.  y )
32ax-gen 1463 . . . 4  |-  A. y
( y  e.  (/)  ->  x  e.  y )
4 equid 1715 . . . 4  |-  x  =  x
53, 42th 174 . . 3  |-  ( A. y ( y  e.  (/)  ->  x  e.  y )  <->  x  =  x
)
65abbii 2312 . 2  |-  { x  |  A. y ( y  e.  (/)  ->  x  e.  y ) }  =  { x  |  x  =  x }
7 df-int 3875 . 2  |-  |^| (/)  =  {
x  |  A. y
( y  e.  (/)  ->  x  e.  y ) }
8 df-v 2765 . 2  |-  _V  =  { x  |  x  =  x }
96, 7, 83eqtr4i 2227 1  |-  |^| (/)  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763   (/)c0 3450   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451  df-int 3875
This theorem is referenced by:  rint0  3913  intexr  4183  fiintim  6992  elfi2  7038  fi0  7041  bj-intexr  15554
  Copyright terms: Public domain W3C validator