ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 Unicode version

Theorem int0 3905
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0  |-  |^| (/)  =  _V

Proof of Theorem int0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3468 . . . . . 6  |-  -.  y  e.  (/)
21pm2.21i 647 . . . . 5  |-  ( y  e.  (/)  ->  x  e.  y )
32ax-gen 1473 . . . 4  |-  A. y
( y  e.  (/)  ->  x  e.  y )
4 equid 1725 . . . 4  |-  x  =  x
53, 42th 174 . . 3  |-  ( A. y ( y  e.  (/)  ->  x  e.  y )  <->  x  =  x
)
65abbii 2322 . 2  |-  { x  |  A. y ( y  e.  (/)  ->  x  e.  y ) }  =  { x  |  x  =  x }
7 df-int 3892 . 2  |-  |^| (/)  =  {
x  |  A. y
( y  e.  (/)  ->  x  e.  y ) }
8 df-v 2775 . 2  |-  _V  =  { x  |  x  =  x }
96, 7, 83eqtr4i 2237 1  |-  |^| (/)  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373    e. wcel 2177   {cab 2192   _Vcvv 2773   (/)c0 3464   |^|cint 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-nul 3465  df-int 3892
This theorem is referenced by:  rint0  3930  intexr  4202  fiintim  7043  elfi2  7089  fi0  7092  bj-intexr  15982
  Copyright terms: Public domain W3C validator