ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 Unicode version

Theorem int0 3936
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0  |-  |^| (/)  =  _V

Proof of Theorem int0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . . . 6  |-  -.  y  e.  (/)
21pm2.21i 649 . . . . 5  |-  ( y  e.  (/)  ->  x  e.  y )
32ax-gen 1495 . . . 4  |-  A. y
( y  e.  (/)  ->  x  e.  y )
4 equid 1747 . . . 4  |-  x  =  x
53, 42th 174 . . 3  |-  ( A. y ( y  e.  (/)  ->  x  e.  y )  <->  x  =  x
)
65abbii 2345 . 2  |-  { x  |  A. y ( y  e.  (/)  ->  x  e.  y ) }  =  { x  |  x  =  x }
7 df-int 3923 . 2  |-  |^| (/)  =  {
x  |  A. y
( y  e.  (/)  ->  x  e.  y ) }
8 df-v 2801 . 2  |-  _V  =  { x  |  x  =  x }
96, 7, 83eqtr4i 2260 1  |-  |^| (/)  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799   (/)c0 3491   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492  df-int 3923
This theorem is referenced by:  rint0  3961  intexr  4233  fiintim  7089  elfi2  7135  fi0  7138  bj-intexr  16229
  Copyright terms: Public domain W3C validator