ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 Unicode version

Theorem int0 3860
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0  |-  |^| (/)  =  _V

Proof of Theorem int0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3428 . . . . . 6  |-  -.  y  e.  (/)
21pm2.21i 646 . . . . 5  |-  ( y  e.  (/)  ->  x  e.  y )
32ax-gen 1449 . . . 4  |-  A. y
( y  e.  (/)  ->  x  e.  y )
4 equid 1701 . . . 4  |-  x  =  x
53, 42th 174 . . 3  |-  ( A. y ( y  e.  (/)  ->  x  e.  y )  <->  x  =  x
)
65abbii 2293 . 2  |-  { x  |  A. y ( y  e.  (/)  ->  x  e.  y ) }  =  { x  |  x  =  x }
7 df-int 3847 . 2  |-  |^| (/)  =  {
x  |  A. y
( y  e.  (/)  ->  x  e.  y ) }
8 df-v 2741 . 2  |-  _V  =  { x  |  x  =  x }
96, 7, 83eqtr4i 2208 1  |-  |^| (/)  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2739   (/)c0 3424   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425  df-int 3847
This theorem is referenced by:  rint0  3885  intexr  4152  fiintim  6930  elfi2  6973  fi0  6976  bj-intexr  14745
  Copyright terms: Public domain W3C validator