Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eliotaeu | Unicode version |
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) |
Ref | Expression |
---|---|
eliotaeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1616 | . 2 | |
2 | eliota 5196 | . 2 | |
3 | df-eu 2027 | . 2 | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wex 1490 weu 2024 wcel 2146 cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sn 3595 df-uni 3806 df-iota 5170 |
This theorem is referenced by: iotam 5200 |
Copyright terms: Public domain | W3C validator |