ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu Unicode version

Theorem eliotaeu 5224
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu  |-  ( A  e.  ( iota x ph )  ->  E! x ph )

Proof of Theorem eliotaeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1629 . 2  |-  ( E. y ( A  e.  y  /\  A. x
( ph  <->  x  =  y
) )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 eliota 5223 . 2  |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y ) ) )
3 df-eu 2041 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
41, 2, 33imtr4i 201 1  |-  ( A  e.  ( iota x ph )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1503   E!weu 2038    e. wcel 2160   iotacio 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-sn 3613  df-uni 3825  df-iota 5196
This theorem is referenced by:  iotam  5227  elfvm  5567
  Copyright terms: Public domain W3C validator