ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu Unicode version

Theorem eliotaeu 5260
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu  |-  ( A  e.  ( iota x ph )  ->  E! x ph )

Proof of Theorem eliotaeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1641 . 2  |-  ( E. y ( A  e.  y  /\  A. x
( ph  <->  x  =  y
) )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 eliota 5259 . 2  |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y ) ) )
3 df-eu 2057 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
41, 2, 33imtr4i 201 1  |-  ( A  e.  ( iota x ph )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371   E.wex 1515   E!weu 2054    e. wcel 2176   iotacio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sn 3639  df-uni 3851  df-iota 5232
This theorem is referenced by:  iotam  5263  elfvm  5609
  Copyright terms: Public domain W3C validator