ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu Unicode version

Theorem eliotaeu 5279
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu  |-  ( A  e.  ( iota x ph )  ->  E! x ph )

Proof of Theorem eliotaeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1642 . 2  |-  ( E. y ( A  e.  y  /\  A. x
( ph  <->  x  =  y
) )  ->  E. y A. x ( ph  <->  x  =  y ) )
2 eliota 5278 . 2  |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y ) ) )
3 df-eu 2058 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
41, 2, 33imtr4i 201 1  |-  ( A  e.  ( iota x ph )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371   E.wex 1516   E!weu 2055    e. wcel 2178   iotacio 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sn 3649  df-uni 3865  df-iota 5251
This theorem is referenced by:  iotam  5282  elfvm  5632
  Copyright terms: Public domain W3C validator