| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotam | Unicode version | ||
| Description: Representation of
"the unique element such that |
| Ref | Expression |
|---|---|
| iotam.1 |
|
| Ref | Expression |
|---|---|
| iotam |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2267 |
. . . . 5
| |
| 2 | 1 | cbvexv 1943 |
. . . 4
|
| 3 | simprr 531 |
. . . . . . . 8
| |
| 4 | 3 | eqcomd 2212 |
. . . . . . 7
|
| 5 | simprl 529 |
. . . . . . . 8
| |
| 6 | simpl 109 |
. . . . . . . . . 10
| |
| 7 | 6, 3 | eleqtrd 2285 |
. . . . . . . . 9
|
| 8 | eliotaeu 5269 |
. . . . . . . . 9
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . 8
|
| 10 | iotam.1 |
. . . . . . . . 9
| |
| 11 | 10 | iota2 5270 |
. . . . . . . 8
|
| 12 | 5, 9, 11 | syl2anc 411 |
. . . . . . 7
|
| 13 | 4, 12 | mpbird 167 |
. . . . . 6
|
| 14 | 13 | ex 115 |
. . . . 5
|
| 15 | 14 | exlimiv 1622 |
. . . 4
|
| 16 | 2, 15 | sylbi 121 |
. . 3
|
| 17 | 16 | 3impib 1204 |
. 2
|
| 18 | 17 | 3com12 1210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-sn 3644 df-pr 3645 df-uni 3857 df-iota 5241 |
| This theorem is referenced by: sgrpidmndm 13327 |
| Copyright terms: Public domain | W3C validator |