ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotam Unicode version

Theorem iotam 5200
Description: Representation of "the unique element such that  ph " with a class expression  A which is inhabited (that means that "the unique element such that  ph " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotam.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
iotam  |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota x ph ) )  ->  ps )
Distinct variable groups:    x, A    w, A    ps, x
Allowed substitution hints:    ph( x, w)    ps( w)    V( x, w)

Proof of Theorem iotam
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2236 . . . . 5  |-  ( w  =  z  ->  (
w  e.  A  <->  z  e.  A ) )
21cbvexv 1916 . . . 4  |-  ( E. w  w  e.  A  <->  E. z  z  e.  A
)
3 simprr 531 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  A  =  ( iota x ph )
)
43eqcomd 2181 . . . . . . 7  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ( iota x ph )  =  A )
5 simprl 529 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  A  e.  V )
6 simpl 109 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  z  e.  A )
76, 3eleqtrd 2254 . . . . . . . . 9  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  z  e.  ( iota x ph )
)
8 eliotaeu 5197 . . . . . . . . 9  |-  ( z  e.  ( iota x ph )  ->  E! x ph )
97, 8syl 14 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  E! x ph )
10 iotam.1 . . . . . . . . 9  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1110iota2 5198 . . . . . . . 8  |-  ( ( A  e.  V  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
125, 9, 11syl2anc 411 . . . . . . 7  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ( ps  <->  ( iota x ph )  =  A ) )
134, 12mpbird 167 . . . . . 6  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ps )
1413ex 115 . . . . 5  |-  ( z  e.  A  ->  (
( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
1514exlimiv 1596 . . . 4  |-  ( E. z  z  e.  A  ->  ( ( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
162, 15sylbi 121 . . 3  |-  ( E. w  w  e.  A  ->  ( ( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
17163impib 1201 . 2  |-  ( ( E. w  w  e.  A  /\  A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps )
18173com12 1207 1  |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota x ph ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1490   E!weu 2024    e. wcel 2146   iotacio 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-sn 3595  df-pr 3596  df-uni 3806  df-iota 5170
This theorem is referenced by:  sgrpidmndm  12685
  Copyright terms: Public domain W3C validator