ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotam Unicode version

Theorem iotam 5190
Description: Representation of "the unique element such that  ph " with a class expression  A which is inhabited (that means that "the unique element such that  ph " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotam.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
iotam  |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota x ph ) )  ->  ps )
Distinct variable groups:    x, A    w, A    ps, x
Allowed substitution hints:    ph( x, w)    ps( w)    V( x, w)

Proof of Theorem iotam
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2231 . . . . 5  |-  ( w  =  z  ->  (
w  e.  A  <->  z  e.  A ) )
21cbvexv 1911 . . . 4  |-  ( E. w  w  e.  A  <->  E. z  z  e.  A
)
3 simprr 527 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  A  =  ( iota x ph )
)
43eqcomd 2176 . . . . . . 7  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ( iota x ph )  =  A )
5 simprl 526 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  A  e.  V )
6 simpl 108 . . . . . . . . . 10  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  z  e.  A )
76, 3eleqtrd 2249 . . . . . . . . 9  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  z  e.  ( iota x ph )
)
8 eliotaeu 5187 . . . . . . . . 9  |-  ( z  e.  ( iota x ph )  ->  E! x ph )
97, 8syl 14 . . . . . . . 8  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  E! x ph )
10 iotam.1 . . . . . . . . 9  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1110iota2 5188 . . . . . . . 8  |-  ( ( A  e.  V  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
125, 9, 11syl2anc 409 . . . . . . 7  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ( ps  <->  ( iota x ph )  =  A ) )
134, 12mpbird 166 . . . . . 6  |-  ( ( z  e.  A  /\  ( A  e.  V  /\  A  =  ( iota x ph ) ) )  ->  ps )
1413ex 114 . . . . 5  |-  ( z  e.  A  ->  (
( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
1514exlimiv 1591 . . . 4  |-  ( E. z  z  e.  A  ->  ( ( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
162, 15sylbi 120 . . 3  |-  ( E. w  w  e.  A  ->  ( ( A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps ) )
17163impib 1196 . 2  |-  ( ( E. w  w  e.  A  /\  A  e.  V  /\  A  =  ( iota x ph ) )  ->  ps )
18173com12 1202 1  |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota x ph ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485   E!weu 2019    e. wcel 2141   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  sgrpidmndm  12656
  Copyright terms: Public domain W3C validator