Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iota2 | Unicode version |
Description: The unique element such that . (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota2.1 |
Ref | Expression |
---|---|
iota2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2736 | . 2 | |
2 | simpl 108 | . . 3 | |
3 | simpr 109 | . . 3 | |
4 | iota2.1 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | nfv 1516 | . . . 4 | |
7 | nfeu1 2025 | . . . 4 | |
8 | 6, 7 | nfan 1553 | . . 3 |
9 | nfvd 1517 | . . 3 | |
10 | nfcvd 2308 | . . 3 | |
11 | 2, 3, 5, 8, 9, 10 | iota2df 5176 | . 2 |
12 | 1, 11 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 weu 2014 wcel 2136 cvv 2725 cio 5150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-sbc 2951 df-un 3119 df-sn 3581 df-pr 3582 df-uni 3789 df-iota 5152 |
This theorem is referenced by: pczpre 12225 pcdiv 12230 |
Copyright terms: Public domain | W3C validator |