ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2 Unicode version

Theorem iota2 5308
Description: The unique element such that  ph. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
iota2  |-  ( ( A  e.  B  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem iota2
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 simpl 109 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  A  e.  _V )
3 simpr 110 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  E! x ph )
4 iota2.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
54adantl 277 . . 3  |-  ( ( ( A  e.  _V  /\  E! x ph )  /\  x  =  A
)  ->  ( ph  <->  ps ) )
6 nfv 1574 . . . 4  |-  F/ x  A  e.  _V
7 nfeu1 2088 . . . 4  |-  F/ x E! x ph
86, 7nfan 1611 . . 3  |-  F/ x
( A  e.  _V  /\  E! x ph )
9 nfvd 1575 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  F/ x ps )
10 nfcvd 2373 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  F/_ x A )
112, 3, 5, 8, 9, 10iota2df 5304 . 2  |-  ( ( A  e.  _V  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
121, 11sylan 283 1  |-  ( ( A  e.  B  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E!weu 2077    e. wcel 2200   _Vcvv 2799   iotacio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278
This theorem is referenced by:  iotam  5310  fvmbr  5662  pczpre  12820  pcdiv  12825  gsum0g  13429  gsumval2  13430
  Copyright terms: Public domain W3C validator