ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2 Unicode version

Theorem iota2 5178
Description: The unique element such that  ph. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
iota2  |-  ( ( A  e.  B  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem iota2
StepHypRef Expression
1 elex 2736 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 simpl 108 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  A  e.  _V )
3 simpr 109 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  E! x ph )
4 iota2.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
54adantl 275 . . 3  |-  ( ( ( A  e.  _V  /\  E! x ph )  /\  x  =  A
)  ->  ( ph  <->  ps ) )
6 nfv 1516 . . . 4  |-  F/ x  A  e.  _V
7 nfeu1 2025 . . . 4  |-  F/ x E! x ph
86, 7nfan 1553 . . 3  |-  F/ x
( A  e.  _V  /\  E! x ph )
9 nfvd 1517 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  F/ x ps )
10 nfcvd 2308 . . 3  |-  ( ( A  e.  _V  /\  E! x ph )  ->  F/_ x A )
112, 3, 5, 8, 9, 10iota2df 5176 . 2  |-  ( ( A  e.  _V  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
121, 11sylan 281 1  |-  ( ( A  e.  B  /\  E! x ph )  -> 
( ps  <->  ( iota x ph )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E!weu 2014    e. wcel 2136   _Vcvv 2725   iotacio 5150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-sbc 2951  df-un 3119  df-sn 3581  df-pr 3582  df-uni 3789  df-iota 5152
This theorem is referenced by:  pczpre  12225  pcdiv  12230
  Copyright terms: Public domain W3C validator