| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2 | Unicode version | ||
| Description: The unique element such
that |
| Ref | Expression |
|---|---|
| iota2.1 |
|
| Ref | Expression |
|---|---|
| iota2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | simpr 110 |
. . 3
| |
| 4 | iota2.1 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | nfv 1574 |
. . . 4
| |
| 7 | nfeu1 2088 |
. . . 4
| |
| 8 | 6, 7 | nfan 1611 |
. . 3
|
| 9 | nfvd 1575 |
. . 3
| |
| 10 | nfcvd 2373 |
. . 3
| |
| 11 | 2, 3, 5, 8, 9, 10 | iota2df 5304 |
. 2
|
| 12 | 1, 11 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 |
| This theorem is referenced by: iotam 5310 fvmbr 5662 pczpre 12820 pcdiv 12825 gsum0g 13429 gsumval2 13430 |
| Copyright terms: Public domain | W3C validator |