| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliotaeu | GIF version | ||
| Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) |
| Ref | Expression |
|---|---|
| eliotaeu | ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpr 1664 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | eliota 5302 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
| 3 | df-eu 2080 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃wex 1538 ∃!weu 2077 ∈ wcel 2200 ℩cio 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sn 3672 df-uni 3888 df-iota 5274 |
| This theorem is referenced by: iotam 5306 elfvm 5656 |
| Copyright terms: Public domain | W3C validator |