ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu GIF version

Theorem eliotaeu 5303
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)

Proof of Theorem eliotaeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1664 . 2 (∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eliota 5302 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
3 df-eu 2080 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 2, 33imtr4i 201 1 (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wex 1538  ∃!weu 2077  wcel 2200  cio 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sn 3672  df-uni 3888  df-iota 5274
This theorem is referenced by:  iotam  5306  elfvm  5656
  Copyright terms: Public domain W3C validator