ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu GIF version

Theorem eliotaeu 5247
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)

Proof of Theorem eliotaeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1632 . 2 (∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eliota 5246 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
3 df-eu 2048 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 2, 33imtr4i 201 1 (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1506  ∃!weu 2045  wcel 2167  cio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by:  iotam  5250  elfvm  5591
  Copyright terms: Public domain W3C validator