ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu GIF version

Theorem eliotaeu 5243
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)

Proof of Theorem eliotaeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1629 . 2 (∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eliota 5242 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
3 df-eu 2045 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 2, 33imtr4i 201 1 (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1503  ∃!weu 2042  wcel 2164  cio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sn 3624  df-uni 3836  df-iota 5215
This theorem is referenced by:  iotam  5246  elfvm  5587
  Copyright terms: Public domain W3C validator