| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eliotaeu | GIF version | ||
| Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| eliotaeu | ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exsimpr 1632 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | eliota 5246 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
| 3 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sn 3628 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: iotam 5250 elfvm 5591 | 
| Copyright terms: Public domain | W3C validator |