![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliotaeu | GIF version |
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.) |
Ref | Expression |
---|---|
eliotaeu | ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1629 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | eliota 5242 | . 2 ⊢ (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | |
3 | df-eu 2045 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1503 ∃!weu 2042 ∈ wcel 2164 ℩cio 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-sn 3624 df-uni 3836 df-iota 5215 |
This theorem is referenced by: iotam 5246 elfvm 5587 |
Copyright terms: Public domain | W3C validator |