ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu GIF version

Theorem eliotaeu 5265
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)

Proof of Theorem eliotaeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1642 . 2 (∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eliota 5264 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
3 df-eu 2058 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 2, 33imtr4i 201 1 (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wex 1516  ∃!weu 2055  wcel 2177  cio 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sn 3640  df-uni 3853  df-iota 5237
This theorem is referenced by:  iotam  5268  elfvm  5616
  Copyright terms: Public domain W3C validator