ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliotaeu GIF version

Theorem eliotaeu 5187
Description: An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
Assertion
Ref Expression
eliotaeu (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)

Proof of Theorem eliotaeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 exsimpr 1611 . 2 (∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 eliota 5186 . 2 (𝐴 ∈ (℩𝑥𝜑) ↔ ∃𝑦(𝐴𝑦 ∧ ∀𝑥(𝜑𝑥 = 𝑦)))
3 df-eu 2022 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 2, 33imtr4i 200 1 (𝐴 ∈ (℩𝑥𝜑) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wex 1485  ∃!weu 2019  wcel 2141  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sn 3589  df-uni 3797  df-iota 5160
This theorem is referenced by:  iotam  5190
  Copyright terms: Public domain W3C validator