ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumss Unicode version

Theorem fisumss 11192
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
Hypotheses
Ref Expression
fsumss.1  |-  ( ph  ->  A  C_  B )
fsumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fsumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
fisumss.adc  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
fsumss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fisumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, j, k    B, j, k    ph, k
Allowed substitution hints:    ph( j)    C( j,
k)

Proof of Theorem fisumss
Dummy variables  f  u  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumss.1 . . . . . 6  |-  ( ph  ->  A  C_  B )
2 sseq0 3408 . . . . . 6  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
31, 2sylan 281 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  A  =  (/) )
43sumeq1d 11166 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  (/)  C )
5 simpr 109 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  B  =  (/) )
65sumeq1d 11166 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  B  C  =  sum_ k  e.  (/)  C )
74, 6eqtr4d 2176 . . 3  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
87ex 114 . 2  |-  ( ph  ->  ( B  =  (/)  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
9 cnvimass 4909 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
10 simprr 522 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B )
11 f1of 5374 . . . . . . . . . 10  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) --> B )
1210, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) --> B )
139, 12fssdm 5294 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `' f " A )  C_  (
1 ... ( `  B
) ) )
1412ffnd 5280 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f  Fn  ( 1 ... ( `  B
) ) )
15 elpreima 5546 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( n  e.  ( `' f " A )  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
1614, 15syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
1712ffvelrnda 5562 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  n )  e.  B
)
1817ex 114 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( 1 ... ( `  B
) )  ->  (
f `  n )  e.  B ) )
1918adantrd 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2016, 19sylbid 149 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( `' f " A
)  ->  ( f `  n )  e.  B
) )
2120imp 123 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( f `  n
)  e.  B )
22 fsumss.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2322ex 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
2423adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
25 eldif 3084 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
26 fsumss.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
27 0cn 7781 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
2826, 27eqeltrdi 2231 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
2925, 28sylan2br 286 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3029expr 373 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
31 eleq1w 2201 . . . . . . . . . . . . . . . 16  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3231dcbid 824 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
33 fisumss.adc . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
3433adantr 274 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  B )  ->  A. j  e.  B DECID  j  e.  A
)
35 simpr 109 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  B )
3632, 34, 35rspcdva 2797 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  -> DECID  k  e.  A
)
37 exmiddc 822 . . . . . . . . . . . . . 14  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
3836, 37syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
3924, 30, 38mpjaod 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
4039fmpttd 5582 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
4140adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( k  e.  B  |->  C ) : B --> CC )
4241ffvelrnda 5562 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  ( f `
 n )  e.  B )  ->  (
( k  e.  B  |->  C ) `  (
f `  n )
)  e.  CC )
4321, 42syldan 280 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  e.  CC )
44 eldifi 3202 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( `  B ) ) )
4544, 17sylan2 284 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( f `  n )  e.  B
)
46 eldifn 3203 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
4746adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  -.  n  e.  ( `' f " A ) )
4816adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( n  e.  ( `' f " A )  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
4944adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  n  e.  ( 1 ... ( `  B ) ) )
5049biantrurd 303 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
5148, 50bitr4d 190 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( n  e.  ( `' f " A )  <->  ( f `  n )  e.  A
) )
5247, 51mtbid 662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  -.  (
f `  n )  e.  A )
5345, 52eldifd 3085 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( f `  n )  e.  ( B  \  A ) )
54 difss 3206 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
55 resmpt 4874 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
5654, 55ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
5756fveq1i 5429 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
58 fvres 5452 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
5957, 58syl5eqr 2187 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
6053, 59syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
61 c0ex 7783 . . . . . . . . . . . . . . 15  |-  0  e.  _V
6261elsn2 3565 . . . . . . . . . . . . . 14  |-  ( C  e.  { 0 }  <-> 
C  =  0 )
6326, 62sylibr 133 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 0 } )
6463fmpttd 5582 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6564ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( k  e.  ( B  \  A
)  |->  C ) : ( B  \  A
) --> { 0 } )
6665, 53ffvelrnd 5563 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  e.  { 0 } )
67 elsni 3549 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 0 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6866, 67syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6960, 68eqtr3d 2175 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  B  |->  C ) `  ( f `
 n ) )  =  0 )
70 eleq1 2203 . . . . . . . . . . . . 13  |-  ( j  =  ( f `  u )  ->  (
j  e.  A  <->  ( f `  u )  e.  A
) )
7170dcbid 824 . . . . . . . . . . . 12  |-  ( j  =  ( f `  u )  ->  (DECID  j  e.  A  <-> DECID  ( f `  u
)  e.  A ) )
7233ad3antrrr 484 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  A. j  e.  B DECID  j  e.  A )
7312ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  f : ( 1 ... ( `  B
) ) --> B )
74 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  u  e.  ( 1 ... ( `  B
) ) )
7573, 74ffvelrnd 5563 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  u )  e.  B
)
7671, 72, 75rspcdva 2797 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
( f `  u
)  e.  A )
7710ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  f : ( 1 ... ( `  B
) ) -1-1-onto-> B )
78 f1ofun 5376 . . . . . . . . . . . . . 14  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  Fun  f )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  Fun  f )
80 f1odm 5378 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  dom  f  =  ( 1 ... ( `  B ) ) )
8177, 80syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  dom  f  =  ( 1 ... ( `  B ) ) )
8274, 81eleqtrrd 2220 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  u  e.  dom  f )
83 fvimacnv 5542 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  u  e.  dom  f )  -> 
( ( f `  u )  e.  A  <->  u  e.  ( `' f
" A ) ) )
8479, 82, 83syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  ( ( f `
 u )  e.  A  <->  u  e.  ( `' f " A
) ) )
8584dcbid 824 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  (DECID  ( f `  u
)  e.  A  <-> DECID  u  e.  ( `' f " A
) ) )
8676, 85mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
u  e.  ( `' f " A ) )
87 elpreima 5546 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( u  e.  ( `' f " A )  <->  ( u  e.  ( 1 ... ( `  B ) )  /\  ( f `  u
)  e.  A ) ) )
88 simpl 108 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ( 1 ... ( `  B
) )  /\  (
f `  u )  e.  A )  ->  u  e.  ( 1 ... ( `  B ) ) )
8987, 88syl6bi 162 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( u  e.  ( `' f " A )  ->  u  e.  ( 1 ... ( `  B ) ) ) )
9089con3d 621 . . . . . . . . . . . . . . 15  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( -.  u  e.  ( 1 ... ( `  B
) )  ->  -.  u  e.  ( `' f " A ) ) )
9114, 90syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( -.  u  e.  ( 1 ... ( `  B ) )  ->  -.  u  e.  ( `' f " A
) ) )
9291adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( -.  u  e.  ( 1 ... ( `  B
) )  ->  -.  u  e.  ( `' f " A ) ) )
9392imp 123 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  ->  -.  u  e.  ( `' f " A
) )
9493olcd 724 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  ->  ( u  e.  ( `' f " A )  \/  -.  u  e.  ( `' f " A ) ) )
95 df-dc 821 . . . . . . . . . . 11  |-  (DECID  u  e.  ( `' f " A )  <->  ( u  e.  ( `' f " A )  \/  -.  u  e.  ( `' f " A ) ) )
9694, 95sylibr 133 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
u  e.  ( `' f " A ) )
97 eluzelz 9358 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  ZZ )
9897adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  u  e.  ZZ )
99 1zzd 9104 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  1  e.  ZZ )
100 simplrl 525 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  B
)  e.  NN )
101100nnzd 9195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  B
)  e.  ZZ )
102 fzdcel 9850 . . . . . . . . . . . 12  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ  /\  ( `  B )  e.  ZZ )  -> DECID 
u  e.  ( 1 ... ( `  B
) ) )
10398, 99, 101, 102syl3anc 1217 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  -> DECID  u  e.  (
1 ... ( `  B
) ) )
104 exmiddc 822 . . . . . . . . . . 11  |-  (DECID  u  e.  ( 1 ... ( `  B ) )  -> 
( u  e.  ( 1 ... ( `  B
) )  \/  -.  u  e.  ( 1 ... ( `  B
) ) ) )
105103, 104syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( u  e.  ( 1 ... ( `  B ) )  \/ 
-.  u  e.  ( 1 ... ( `  B
) ) ) )
10686, 96, 105mpjaodan 788 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  -> DECID  u  e.  ( `' f " A
) )
107106ralrimiva 2508 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A. u  e.  ( ZZ>=
`  1 )DECID  u  e.  ( `' f " A ) )
108 1zzd 9104 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
1  e.  ZZ )
109 fzssuz 9875 . . . . . . . . 9  |-  ( 1 ... ( `  B
) )  C_  ( ZZ>=
`  1 )
110109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( 1 ... ( `  B ) )  C_  ( ZZ>= `  1 )
)
111103ralrimiva 2508 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A. u  e.  ( ZZ>=
`  1 )DECID  u  e.  ( 1 ... ( `  B ) ) )
11213, 43, 69, 107, 108, 110, 111isumss 11191 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  sum_ n  e.  ( 1 ... ( `  B )
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
1131ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  A  C_  B )
114113resmptd 4877 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
115114fveq1d 5430 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
116 fvres 5452 . . . . . . . . . . 11  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
117116adantl 275 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
118115, 117eqtr3d 2175 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
119118sumeq2dv 11168 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ m  e.  A  ( (
k  e.  B  |->  C ) `  m ) )
120 fveq2 5428 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
1211adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A  C_  B )
122 fsumss.4 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  Fin )
123 ssfidc 6830 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A. j  e.  B DECID  j  e.  A )  ->  A  e.  Fin )
124122, 1, 33, 123syl3anc 1217 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  Fin )
125124adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A  e.  Fin )
126121, 10, 125preimaf1ofi 6846 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `' f " A )  e.  Fin )
127 f1of1 5373 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) -1-1-> B )
12810, 127syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -1-1-> B )
129 f1ores 5389 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
130128, 13, 129syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
131 f1ofo 5381 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) -onto-> B )
13210, 131syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -onto-> B )
133 foimacnv 5392 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
134132, 121, 133syl2anc 409 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f " ( `' f " A
) )  =  A )
135 f1oeq3 5365 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
136134, 135syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
137130, 136mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> A )
138 fvres 5452 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
139138adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
140121sselda 3101 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
14141ffvelrnda 5562 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
142140, 141syldan 280 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
143120, 126, 137, 139, 142fsumf1o 11190 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
144119, 143eqtrd 2173 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
145 simprl 521 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `  B )  e.  NN )
146145nnzd 9195 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `  B )  e.  ZZ )
147108, 146fzfigd 10234 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( 1 ... ( `  B ) )  e. 
Fin )
148 eqidd 2141 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  n )  =  ( f `  n ) )
149120, 147, 10, 148, 141fsumf1o 11190 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ n  e.  ( 1 ... ( `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
150112, 144, 1493eqtr4d 2183 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m ) )
15122ralrimiva 2508 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
152 sumfct 11174 . . . . . . . 8  |-  ( A. k  e.  A  C  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
sum_ k  e.  A  C )
153151, 152syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
)
154153adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ k  e.  A  C )
15522adantlr 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  A )  ->  C  e.  CC )
156 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  ph )
157 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  B )
158 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  -.  k  e.  A
)
159157, 158eldifd 3085 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  ( B 
\  A ) )
160156, 159, 26syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  =  0 )
161 0cnd 7782 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  0  e.  CC )
162160, 161eqeltrd 2217 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  e.  CC )
163155, 162, 38mpjaodan 788 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
164163ralrimiva 2508 . . . . . . . 8  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
165 sumfct 11174 . . . . . . . 8  |-  ( A. k  e.  B  C  e.  CC  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `
 m )  = 
sum_ k  e.  B  C )
166164, 165syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
)
167166adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ k  e.  B  C )
168150, 154, 1673eqtr3d 2181 . . . . 5  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
169168expr 373 . . . 4  |-  ( (
ph  /\  ( `  B
)  e.  NN )  ->  ( f : ( 1 ... ( `  B ) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
170169exlimdv 1792 . . 3  |-  ( (
ph  /\  ( `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
171170expimpd 361 . 2  |-  ( ph  ->  ( ( ( `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( `  B
) ) -1-1-onto-> B )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
172 fz1f1o 11175 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( `  B )  e.  NN  /\  E. f 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) ) )
173122, 172syl 14 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) ) )
1748, 171, 173mpjaod 708 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417    \ cdif 3072    C_ wss 3075   (/)c0 3367   {csn 3531    |-> cmpt 3996   `'ccnv 4545   dom cdm 4546    |` cres 4548   "cima 4549   Fun wfun 5124    Fn wfn 5125   -->wf 5126   -1-1->wf1 5127   -onto->wfo 5128   -1-1-onto->wf1o 5129   ` cfv 5130  (class class class)co 5781   Fincfn 6641   CCcc 7641   0cc0 7643   1c1 7644   NNcn 8743   ZZcz 9077   ZZ>=cuz 9349   ...cfz 9820  ♯chash 10552   sum_csu 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-frec 6295  df-1o 6320  df-oadd 6324  df-er 6436  df-en 6642  df-dom 6643  df-fin 6644  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-fz 9821  df-fzo 9950  df-seqfrec 10249  df-exp 10323  df-ihash 10553  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-clim 11079  df-sumdc 11154
This theorem is referenced by:  isumss2  11193
  Copyright terms: Public domain W3C validator