ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumss Unicode version

Theorem fisumss 11432
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
Hypotheses
Ref Expression
fsumss.1  |-  ( ph  ->  A  C_  B )
fsumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
fsumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
fisumss.adc  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
fsumss.4  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
fisumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, j, k    B, j, k    ph, k
Allowed substitution hints:    ph( j)    C( j,
k)

Proof of Theorem fisumss
Dummy variables  f  u  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumss.1 . . . . . 6  |-  ( ph  ->  A  C_  B )
2 sseq0 3479 . . . . . 6  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
31, 2sylan 283 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  A  =  (/) )
43sumeq1d 11406 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  (/)  C )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  B  =  (/) )  ->  B  =  (/) )
65sumeq1d 11406 . . . 4  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  B  C  =  sum_ k  e.  (/)  C )
74, 6eqtr4d 2225 . . 3  |-  ( (
ph  /\  B  =  (/) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
87ex 115 . 2  |-  ( ph  ->  ( B  =  (/)  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
9 cnvimass 5009 . . . . . . . . 9  |-  ( `' f " A ) 
C_  dom  f
10 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B )
11 f1of 5480 . . . . . . . . . 10  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) --> B )
1210, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) --> B )
139, 12fssdm 5399 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `' f " A )  C_  (
1 ... ( `  B
) ) )
1412ffnd 5385 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f  Fn  ( 1 ... ( `  B
) ) )
15 elpreima 5656 . . . . . . . . . . . 12  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( n  e.  ( `' f " A )  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
1614, 15syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( `' f " A
)  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
1712ffvelcdmda 5672 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  n )  e.  B
)
1817ex 115 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( 1 ... ( `  B
) )  ->  (
f `  n )  e.  B ) )
1918adantrd 279 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A )  ->  ( f `  n )  e.  B
) )
2016, 19sylbid 150 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( n  e.  ( `' f " A
)  ->  ( f `  n )  e.  B
) )
2120imp 124 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( f `  n
)  e.  B )
22 fsumss.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2322ex 115 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
2423adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
25 eldif 3153 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
26 fsumss.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
27 0cn 7979 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
2826, 27eqeltrdi 2280 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
2925, 28sylan2br 288 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
3029expr 375 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
31 eleq1w 2250 . . . . . . . . . . . . . . . 16  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3231dcbid 839 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
33 fisumss.adc . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )
3433adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  B )  ->  A. j  e.  B DECID  j  e.  A
)
35 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  B )
3632, 34, 35rspcdva 2861 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  -> DECID  k  e.  A
)
37 exmiddc 837 . . . . . . . . . . . . . 14  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
3836, 37syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  \/  -.  k  e.  A
) )
3924, 30, 38mpjaod 719 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
4039fmpttd 5692 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
4140adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( k  e.  B  |->  C ) : B --> CC )
4241ffvelcdmda 5672 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  ( f `
 n )  e.  B )  ->  (
( k  e.  B  |->  C ) `  (
f `  n )
)  e.  CC )
4321, 42syldan 282 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( ( k  e.  B  |->  C ) `  ( f `  n
) )  e.  CC )
44 eldifi 3272 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1 ... ( `  B
) )  \  ( `' f " A
) )  ->  n  e.  ( 1 ... ( `  B ) ) )
4544, 17sylan2 286 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( f `  n )  e.  B
)
46 eldifn 3273 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1 ... ( `  B
) )  \  ( `' f " A
) )  ->  -.  n  e.  ( `' f " A ) )
4746adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  -.  n  e.  ( `' f " A ) )
4816adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( n  e.  ( `' f " A )  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
4944adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  n  e.  ( 1 ... ( `  B ) ) )
5049biantrurd 305 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
f `  n )  e.  A  <->  ( n  e.  ( 1 ... ( `  B ) )  /\  ( f `  n
)  e.  A ) ) )
5148, 50bitr4d 191 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( n  e.  ( `' f " A )  <->  ( f `  n )  e.  A
) )
5247, 51mtbid 673 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  -.  (
f `  n )  e.  A )
5345, 52eldifd 3154 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( f `  n )  e.  ( B  \  A ) )
54 difss 3276 . . . . . . . . . . . . 13  |-  ( B 
\  A )  C_  B
55 resmpt 4973 . . . . . . . . . . . . 13  |-  ( ( B  \  A ) 
C_  B  ->  (
( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A
)  |->  C ) )
5654, 55ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  B  |->  C )  |`  ( B  \  A ) )  =  ( k  e.  ( B  \  A ) 
|->  C )
5756fveq1i 5535 . . . . . . . . . . 11  |-  ( ( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `
 ( f `  n ) )  =  ( ( k  e.  ( B  \  A
)  |->  C ) `  ( f `  n
) )
58 fvres 5558 . . . . . . . . . . 11  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( ( k  e.  B  |->  C )  |`  ( B  \  A ) ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
5957, 58eqtr3id 2236 . . . . . . . . . 10  |-  ( ( f `  n )  e.  ( B  \  A )  ->  (
( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
6053, 59syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
61 c0ex 7981 . . . . . . . . . . . . . . 15  |-  0  e.  _V
6261elsn2 3641 . . . . . . . . . . . . . 14  |-  ( C  e.  { 0 }  <-> 
C  =  0 )
6326, 62sylibr 134 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  { 0 } )
6463fmpttd 5692 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( B  \  A ) 
|->  C ) : ( B  \  A ) --> { 0 } )
6564ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( k  e.  ( B  \  A
)  |->  C ) : ( B  \  A
) --> { 0 } )
6665, 53ffvelcdmd 5673 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  e.  { 0 } )
67 elsni 3625 . . . . . . . . . 10  |-  ( ( ( k  e.  ( B  \  A ) 
|->  C ) `  (
f `  n )
)  e.  { 0 }  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6866, 67syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  ( B 
\  A )  |->  C ) `  ( f `
 n ) )  =  0 )
6960, 68eqtr3d 2224 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( ( 1 ... ( `  B )
)  \  ( `' f " A ) ) )  ->  ( (
k  e.  B  |->  C ) `  ( f `
 n ) )  =  0 )
70 eleq1 2252 . . . . . . . . . . . . 13  |-  ( j  =  ( f `  u )  ->  (
j  e.  A  <->  ( f `  u )  e.  A
) )
7170dcbid 839 . . . . . . . . . . . 12  |-  ( j  =  ( f `  u )  ->  (DECID  j  e.  A  <-> DECID  ( f `  u
)  e.  A ) )
7233ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  A. j  e.  B DECID  j  e.  A )
7312ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  f : ( 1 ... ( `  B
) ) --> B )
74 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  u  e.  ( 1 ... ( `  B
) ) )
7573, 74ffvelcdmd 5673 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  u )  e.  B
)
7671, 72, 75rspcdva 2861 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
( f `  u
)  e.  A )
7710ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  f : ( 1 ... ( `  B
) ) -1-1-onto-> B )
78 f1ofun 5482 . . . . . . . . . . . . . 14  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  Fun  f )
7977, 78syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  Fun  f )
80 f1odm 5484 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  dom  f  =  ( 1 ... ( `  B ) ) )
8177, 80syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  dom  f  =  ( 1 ... ( `  B ) ) )
8274, 81eleqtrrd 2269 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  u  e.  dom  f )
83 fvimacnv 5652 . . . . . . . . . . . . 13  |-  ( ( Fun  f  /\  u  e.  dom  f )  -> 
( ( f `  u )  e.  A  <->  u  e.  ( `' f
" A ) ) )
8479, 82, 83syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  ( ( f `
 u )  e.  A  <->  u  e.  ( `' f " A
) ) )
8584dcbid 839 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  ->  (DECID  ( f `  u
)  e.  A  <-> DECID  u  e.  ( `' f " A
) ) )
8676, 85mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
u  e.  ( `' f " A ) )
87 elpreima 5656 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( u  e.  ( `' f " A )  <->  ( u  e.  ( 1 ... ( `  B ) )  /\  ( f `  u
)  e.  A ) ) )
88 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ( 1 ... ( `  B
) )  /\  (
f `  u )  e.  A )  ->  u  e.  ( 1 ... ( `  B ) ) )
8987, 88biimtrdi 163 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( u  e.  ( `' f " A )  ->  u  e.  ( 1 ... ( `  B ) ) ) )
9089con3d 632 . . . . . . . . . . . . . . 15  |-  ( f  Fn  ( 1 ... ( `  B )
)  ->  ( -.  u  e.  ( 1 ... ( `  B
) )  ->  -.  u  e.  ( `' f " A ) ) )
9114, 90syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( -.  u  e.  ( 1 ... ( `  B ) )  ->  -.  u  e.  ( `' f " A
) ) )
9291adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( -.  u  e.  ( 1 ... ( `  B
) )  ->  -.  u  e.  ( `' f " A ) ) )
9392imp 124 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  ->  -.  u  e.  ( `' f " A
) )
9493olcd 735 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  ->  ( u  e.  ( `' f " A )  \/  -.  u  e.  ( `' f " A ) ) )
95 df-dc 836 . . . . . . . . . . 11  |-  (DECID  u  e.  ( `' f " A )  <->  ( u  e.  ( `' f " A )  \/  -.  u  e.  ( `' f " A ) ) )
9694, 95sylibr 134 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  e.  ( 1 ... ( `  B ) ) )  -> DECID 
u  e.  ( `' f " A ) )
97 eluzelz 9567 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  ZZ )
9897adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  u  e.  ZZ )
99 1zzd 9310 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  1  e.  ZZ )
100 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  B
)  e.  NN )
101100nnzd 9404 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( `  B
)  e.  ZZ )
102 fzdcel 10070 . . . . . . . . . . . 12  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ  /\  ( `  B )  e.  ZZ )  -> DECID 
u  e.  ( 1 ... ( `  B
) ) )
10398, 99, 101, 102syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  -> DECID  u  e.  (
1 ... ( `  B
) ) )
104 exmiddc 837 . . . . . . . . . . 11  |-  (DECID  u  e.  ( 1 ... ( `  B ) )  -> 
( u  e.  ( 1 ... ( `  B
) )  \/  -.  u  e.  ( 1 ... ( `  B
) ) ) )
105103, 104syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  ->  ( u  e.  ( 1 ... ( `  B ) )  \/ 
-.  u  e.  ( 1 ... ( `  B
) ) ) )
10686, 96, 105mpjaodan 799 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  u  e.  ( ZZ>= `  1 )
)  -> DECID  u  e.  ( `' f " A
) )
107106ralrimiva 2563 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A. u  e.  ( ZZ>=
`  1 )DECID  u  e.  ( `' f " A ) )
108 1zzd 9310 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
1  e.  ZZ )
109 fzssuz 10095 . . . . . . . . 9  |-  ( 1 ... ( `  B
) )  C_  ( ZZ>=
`  1 )
110109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( 1 ... ( `  B ) )  C_  ( ZZ>= `  1 )
)
111103ralrimiva 2563 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A. u  e.  ( ZZ>=
`  1 )DECID  u  e.  ( 1 ... ( `  B ) ) )
11213, 43, 69, 107, 108, 110, 111isumss 11431 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `  n
) )  =  sum_ n  e.  ( 1 ... ( `  B )
) ( ( k  e.  B  |->  C ) `
 ( f `  n ) ) )
1131ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  A  C_  B )
114113resmptd 4976 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  B  |->  C )  |`  A )  =  ( k  e.  A  |->  C ) )
115114fveq1d 5536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  A  |->  C ) `  m ) )
116 fvres 5558 . . . . . . . . . . 11  |-  ( m  e.  A  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
117116adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( ( k  e.  B  |->  C )  |`  A ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
118115, 117eqtr3d 2224 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  m ) )
119118sumeq2dv 11408 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ m  e.  A  ( (
k  e.  B  |->  C ) `  m ) )
120 fveq2 5534 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  B  |->  C ) `  m
)  =  ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
1211adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A  C_  B )
122 fsumss.4 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  Fin )
123 ssfidc 6963 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A. j  e.  B DECID  j  e.  A )  ->  A  e.  Fin )
124122, 1, 33, 123syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  Fin )
125124adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  A  e.  Fin )
126121, 10, 125preimaf1ofi 6980 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `' f " A )  e.  Fin )
127 f1of1 5479 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) -1-1-> B )
12810, 127syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -1-1-> B )
129 f1ores 5495 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( `  B
) ) -1-1-> B  /\  ( `' f " A
)  C_  ( 1 ... ( `  B
) ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
130128, 13, 129syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) ) )
131 f1ofo 5487 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( `  B )
)
-1-1-onto-> B  ->  f : ( 1 ... ( `  B
) ) -onto-> B )
13210, 131syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
f : ( 1 ... ( `  B
) ) -onto-> B )
133 foimacnv 5498 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... ( `  B
) ) -onto-> B  /\  A  C_  B )  -> 
( f " ( `' f " A
) )  =  A )
134132, 121, 133syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f " ( `' f " A
) )  =  A )
135 f1oeq3 5470 . . . . . . . . . . 11  |-  ( ( f " ( `' f " A ) )  =  A  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
136134, 135syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( ( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> ( f " ( `' f " A
) )  <->  ( f  |`  ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) )
137130, 136mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( f  |`  ( `' f " A
) ) : ( `' f " A
)
-1-1-onto-> A )
138 fvres 5558 . . . . . . . . . 10  |-  ( n  e.  ( `' f
" A )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
139138adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( `' f " A ) )  -> 
( ( f  |`  ( `' f " A
) ) `  n
)  =  ( f `
 n ) )
140121sselda 3170 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  m  e.  B )
14141ffvelcdmda 5672 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
142140, 141syldan 282 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  m  e.  A )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
143120, 126, 137, 139, 142fsumf1o 11430 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
144119, 143eqtrd 2222 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ n  e.  ( `' f " A ) ( ( k  e.  B  |->  C ) `  ( f `
 n ) ) )
145 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `  B )  e.  NN )
146145nnzd 9404 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( `  B )  e.  ZZ )
147108, 146fzfigd 10462 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  -> 
( 1 ... ( `  B ) )  e. 
Fin )
148 eqidd 2190 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  B )  e.  NN  /\  f : ( 1 ... ( `  B ) ) -1-1-onto-> B ) )  /\  n  e.  ( 1 ... ( `  B ) ) )  ->  ( f `  n )  =  ( f `  n ) )
149120, 147, 10, 148, 141fsumf1o 11430 . . . . . . 7  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ n  e.  ( 1 ... ( `  B ) ) ( ( k  e.  B  |->  C ) `  (
f `  n )
) )
150112, 144, 1493eqtr4d 2232 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m ) )
15122ralrimiva 2563 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
152 sumfct 11414 . . . . . . . 8  |-  ( A. k  e.  A  C  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
sum_ k  e.  A  C )
153151, 152syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
)
154153adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  sum_ k  e.  A  C )
15522adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  A )  ->  C  e.  CC )
156 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  ph )
157 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  B )
158 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  -.  k  e.  A
)
159157, 158eldifd 3154 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  k  e.  ( B 
\  A ) )
160156, 159, 26syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  =  0 )
161 0cnd 7980 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  0  e.  CC )
162160, 161eqeltrd 2266 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  A )  ->  C  e.  CC )
163155, 162, 38mpjaodan 799 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
164163ralrimiva 2563 . . . . . . . 8  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
165 sumfct 11414 . . . . . . . 8  |-  ( A. k  e.  B  C  e.  CC  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `
 m )  = 
sum_ k  e.  B  C )
166164, 165syl 14 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
)
167166adantr 276 . . . . . 6  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m
)  =  sum_ k  e.  B  C )
168150, 154, 1673eqtr3d 2230 . . . . 5  |-  ( (
ph  /\  ( ( `  B )  e.  NN  /\  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
169168expr 375 . . . 4  |-  ( (
ph  /\  ( `  B
)  e.  NN )  ->  ( f : ( 1 ... ( `  B ) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C ) )
170169exlimdv 1830 . . 3  |-  ( (
ph  /\  ( `  B
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
171170expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( `  B
) ) -1-1-onto-> B )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
) )
172 fz1f1o 11415 . . 3  |-  ( B  e.  Fin  ->  ( B  =  (/)  \/  (
( `  B )  e.  NN  /\  E. f 
f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) ) )
173122, 172syl 14 . 2  |-  ( ph  ->  ( B  =  (/)  \/  ( ( `  B
)  e.  NN  /\  E. f  f : ( 1 ... ( `  B
) ) -1-1-onto-> B ) ) )
1748, 171, 173mpjaod 719 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468    \ cdif 3141    C_ wss 3144   (/)c0 3437   {csn 3607    |-> cmpt 4079   `'ccnv 4643   dom cdm 4644    |` cres 4646   "cima 4647   Fun wfun 5229    Fn wfn 5230   -->wf 5231   -1-1->wf1 5232   -onto->wfo 5233   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5896   Fincfn 6766   CCcc 7839   0cc0 7841   1c1 7842   NNcn 8949   ZZcz 9283   ZZ>=cuz 9558   ...cfz 10038  ♯chash 10787   sum_csu 11393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394
This theorem is referenced by:  isumss2  11433
  Copyright terms: Public domain W3C validator