ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2g Unicode version

Theorem elsn2g 3609
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that  B, rather than  A, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 3594 . 2  |-  ( A  e.  { B }  ->  A  =  B )
2 snidg 3605 . . 3  |-  ( B  e.  V  ->  B  e.  { B } )
3 eleq1 2229 . . 3  |-  ( A  =  B  ->  ( A  e.  { B } 
<->  B  e.  { B } ) )
42, 3syl5ibrcom 156 . 2  |-  ( B  e.  V  ->  ( A  =  B  ->  A  e.  { B }
) )
51, 4impbid2 142 1  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by:  elsn2  3610  elsuc2g  4383  mptiniseg  5098  elfzp1  10007  fzosplitsni  10170  zfz1isolemiso  10752
  Copyright terms: Public domain W3C validator