| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsn2g | Unicode version | ||
| Description: There is only one element
in a singleton. Exercise 2 of [TakeutiZaring]
p. 15. This variation requires only that |
| Ref | Expression |
|---|---|
| elsn2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3661 |
. 2
| |
| 2 | snidg 3672 |
. . 3
| |
| 3 | eleq1 2270 |
. . 3
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. 2
|
| 5 | 1, 4 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: elsn2 3677 elsuc2g 4470 mptiniseg 5196 elfzp1 10229 fzosplitsni 10401 zfz1isolemiso 11021 1nsgtrivd 13670 zrhrhmb 14499 ply1termlem 15329 |
| Copyright terms: Public domain | W3C validator |