| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsn2g | Unicode version | ||
| Description: There is only one element
in a singleton. Exercise 2 of [TakeutiZaring]
p. 15. This variation requires only that |
| Ref | Expression |
|---|---|
| elsn2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3684 |
. 2
| |
| 2 | snidg 3695 |
. . 3
| |
| 3 | eleq1 2292 |
. . 3
| |
| 4 | 2, 3 | syl5ibrcom 157 |
. 2
|
| 5 | 1, 4 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: elsn2 3700 elsuc2g 4496 mptiniseg 5223 elfzp1 10268 fzosplitsni 10441 zfz1isolemiso 11061 1nsgtrivd 13756 zrhrhmb 14586 ply1termlem 15416 |
| Copyright terms: Public domain | W3C validator |