ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2g Unicode version

Theorem elsn2g 3676
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that  B, rather than  A, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 3661 . 2  |-  ( A  e.  { B }  ->  A  =  B )
2 snidg 3672 . . 3  |-  ( B  e.  V  ->  B  e.  { B } )
3 eleq1 2270 . . 3  |-  ( A  =  B  ->  ( A  e.  { B } 
<->  B  e.  { B } ) )
42, 3syl5ibrcom 157 . 2  |-  ( B  e.  V  ->  ( A  =  B  ->  A  e.  { B }
) )
51, 4impbid2 143 1  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sn 3649
This theorem is referenced by:  elsn2  3677  elsuc2g  4470  mptiniseg  5196  elfzp1  10229  fzosplitsni  10401  zfz1isolemiso  11021  1nsgtrivd  13670  zrhrhmb  14499  ply1termlem  15329
  Copyright terms: Public domain W3C validator