ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2g Unicode version

Theorem elsn2g 3699
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that  B, rather than  A, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 3684 . 2  |-  ( A  e.  { B }  ->  A  =  B )
2 snidg 3695 . . 3  |-  ( B  e.  V  ->  B  e.  { B } )
3 eleq1 2292 . . 3  |-  ( A  =  B  ->  ( A  e.  { B } 
<->  B  e.  { B } ) )
42, 3syl5ibrcom 157 . 2  |-  ( B  e.  V  ->  ( A  =  B  ->  A  e.  { B }
) )
51, 4impbid2 143 1  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  elsn2  3700  elsuc2g  4496  mptiniseg  5223  elfzp1  10268  fzosplitsni  10441  zfz1isolemiso  11061  1nsgtrivd  13756  zrhrhmb  14586  ply1termlem  15416
  Copyright terms: Public domain W3C validator