Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsn2g | Unicode version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that , rather than , be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsn2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3594 | . 2 | |
2 | snidg 3605 | . . 3 | |
3 | eleq1 2229 | . . 3 | |
4 | 2, 3 | syl5ibrcom 156 | . 2 |
5 | 1, 4 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: elsn2 3610 elsuc2g 4383 mptiniseg 5098 elfzp1 10007 fzosplitsni 10170 zfz1isolemiso 10752 |
Copyright terms: Public domain | W3C validator |