ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6523
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6515 . . 3  |-  1o  =  { (/) }
21eleq2i 2272 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 4171 . . 3  |-  (/)  e.  _V
43elsn2 3667 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 184 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   (/)c0 3460   {csn 3633   1oc1o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-suc 4418  df-1o 6502
This theorem is referenced by:  0lt1o  6526  map0e  6773  map1  6904  omp1eomlem  7196  ctmlemr  7210  ctssdclemn0  7212  exmidfodomrlemeldju  7307  exmidfodomrlemreseldju  7308  pw1on  7338  1tonninf  10586  1dom1el  15927
  Copyright terms: Public domain W3C validator