ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6583
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6575 . . 3  |-  1o  =  { (/) }
21eleq2i 2296 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 4211 . . 3  |-  (/)  e.  _V
43elsn2 3700 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 184 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   (/)c0 3491   {csn 3666   1oc1o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4462  df-1o 6562
This theorem is referenced by:  0lt1o  6586  map0e  6833  map1  6965  omp1eomlem  7261  ctmlemr  7275  ctssdclemn0  7277  exmidfodomrlemeldju  7377  exmidfodomrlemreseldju  7378  pw1on  7411  1tonninf  10663  1dom1el  16354
  Copyright terms: Public domain W3C validator