ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6504
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6496 . . 3  |-  1o  =  { (/) }
21eleq2i 2263 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 4161 . . 3  |-  (/)  e.  _V
43elsn2 3657 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 184 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   (/)c0 3451   {csn 3623   1oc1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4160
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-sn 3629  df-suc 4407  df-1o 6483
This theorem is referenced by:  0lt1o  6507  map0e  6754  map1  6880  omp1eomlem  7169  ctmlemr  7183  ctssdclemn0  7185  exmidfodomrlemeldju  7278  exmidfodomrlemreseldju  7279  pw1on  7309  1tonninf  10550  1dom1el  15721
  Copyright terms: Public domain W3C validator