Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > el1o | Unicode version |
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
el1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6408 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | 0ex 4116 | . . 3 | |
4 | 3 | elsn2 3617 | . 2 |
5 | 2, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 c0 3414 csn 3583 c1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-suc 4356 df-1o 6395 |
This theorem is referenced by: 0lt1o 6419 map0e 6664 map1 6790 omp1eomlem 7071 ctmlemr 7085 ctssdclemn0 7087 exmidfodomrlemeldju 7176 exmidfodomrlemreseldju 7177 pw1on 7203 1tonninf 10396 |
Copyright terms: Public domain | W3C validator |