ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6440
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6432 . . 3  |-  1o  =  { (/) }
21eleq2i 2244 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 4132 . . 3  |-  (/)  e.  _V
43elsn2 3628 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 184 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   (/)c0 3424   {csn 3594   1oc1o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4131
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-suc 4373  df-1o 6419
This theorem is referenced by:  0lt1o  6443  map0e  6688  map1  6814  omp1eomlem  7095  ctmlemr  7109  ctssdclemn0  7111  exmidfodomrlemeldju  7200  exmidfodomrlemreseldju  7201  pw1on  7227  1tonninf  10442
  Copyright terms: Public domain W3C validator