ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6490
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6482 . . 3  |-  1o  =  { (/) }
21eleq2i 2260 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 4156 . . 3  |-  (/)  e.  _V
43elsn2 3652 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 184 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   (/)c0 3446   {csn 3618   1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447  df-sn 3624  df-suc 4402  df-1o 6469
This theorem is referenced by:  0lt1o  6493  map0e  6740  map1  6866  omp1eomlem  7153  ctmlemr  7167  ctssdclemn0  7169  exmidfodomrlemeldju  7259  exmidfodomrlemreseldju  7260  pw1on  7286  1tonninf  10512  1dom1el  15483
  Copyright terms: Public domain W3C validator