ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o Unicode version

Theorem el1o 6215
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o  |-  ( A  e.  1o  <->  A  =  (/) )

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6208 . . 3  |-  1o  =  { (/) }
21eleq2i 2155 . 2  |-  ( A  e.  1o  <->  A  e.  {
(/) } )
3 0ex 3972 . . 3  |-  (/)  e.  _V
43elsn2 3482 . 2  |-  ( A  e.  { (/) }  <->  A  =  (/) )
52, 4bitri 183 1  |-  ( A  e.  1o  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1290    e. wcel 1439   (/)c0 3287   {csn 3450   1oc1o 6188
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-nul 3971
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-un 3004  df-nul 3288  df-sn 3456  df-suc 4207  df-1o 6195
This theorem is referenced by:  0lt1o  6218  map0e  6457  map1  6583  ctmlemr  6844  exmidfodomrlemeldju  6886  exmidfodomrlemreseldju  6887  1tonninf  9907
  Copyright terms: Public domain W3C validator