![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn0 | Unicode version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9241 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2260 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elun 3300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | c0ex 8013 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 4 | elsn2 3652 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | orbi2i 763 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 3, 6 | 3bitri 206 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-n0 9241 |
This theorem is referenced by: 0nn0 9255 nn0ge0 9265 nnnn0addcl 9270 nnm1nn0 9281 elnnnn0b 9284 elnn0z 9330 elznn0nn 9331 elznn0 9332 elznn 9333 nn0ind-raph 9434 nn0ledivnn 9833 expp1 10617 expnegap0 10618 expcllem 10621 nn0ltexp2 10780 facp1 10801 faclbnd 10812 faclbnd3 10814 bcn1 10829 bcval5 10834 hashnncl 10866 fz1f1o 11518 arisum 11641 arisum2 11642 fprodfac 11758 ef0lem 11803 nn0enne 12043 nn0o1gt2 12046 dfgcd2 12151 mulgcd 12153 eucalgf 12193 eucalginv 12194 prmdvdsexpr 12288 rpexp1i 12292 nn0gcdsq 12338 odzdvds 12383 pceq0 12460 fldivp1 12486 pockthg 12495 1arith 12505 4sqlem17 12545 4sqlem19 12547 mulgnn0gsum 13198 mulgnn0p1 13203 mulgnn0subcl 13205 mulgneg 13210 mulgnn0z 13219 mulgnn0dir 13222 mulgnn0ass 13228 submmulg 13236 znf1o 14139 dvexp2 14861 lgsdir 15151 lgsabs1 15155 lgseisenlem1 15186 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |