![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn0 | Unicode version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9180 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2244 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elun 3278 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | c0ex 7954 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 4 | elsn2 3628 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | orbi2i 762 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 3, 6 | 3bitri 206 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1cn 7907 ax-icn 7909 ax-addcl 7910 ax-mulcl 7912 ax-i2m1 7919 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-n0 9180 |
This theorem is referenced by: 0nn0 9194 nn0ge0 9204 nnnn0addcl 9209 nnm1nn0 9220 elnnnn0b 9223 elnn0z 9269 elznn0nn 9270 elznn0 9271 elznn 9272 nn0ind-raph 9373 nn0ledivnn 9770 expp1 10530 expnegap0 10531 expcllem 10534 nn0ltexp2 10692 facp1 10713 faclbnd 10724 faclbnd3 10726 bcn1 10741 bcval5 10746 hashnncl 10778 fz1f1o 11386 arisum 11509 arisum2 11510 fprodfac 11626 ef0lem 11671 nn0enne 11910 nn0o1gt2 11913 dfgcd2 12018 mulgcd 12020 eucalgf 12058 eucalginv 12059 prmdvdsexpr 12153 rpexp1i 12157 nn0gcdsq 12203 odzdvds 12248 pceq0 12324 fldivp1 12349 pockthg 12358 1arith 12368 mulgnn0p1 13008 mulgnn0subcl 13010 mulgneg 13015 mulgnn0z 13024 mulgnn0dir 13027 mulgnn0ass 13033 dvexp2 14364 lgsdir 14624 lgsabs1 14628 lgseisenlem1 14638 2sqlem7 14656 |
Copyright terms: Public domain | W3C validator |