Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn0 | Unicode version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9111 | . . 3 | |
2 | 1 | eleq2i 2232 | . 2 |
3 | elun 3262 | . 2 | |
4 | c0ex 7889 | . . . 4 | |
5 | 4 | elsn2 3609 | . . 3 |
6 | 5 | orbi2i 752 | . 2 |
7 | 2, 3, 6 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 wceq 1343 wcel 2136 cun 3113 csn 3575 cc0 7749 cn 8853 cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-i2m1 7854 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-n0 9111 |
This theorem is referenced by: 0nn0 9125 nn0ge0 9135 nnnn0addcl 9140 nnm1nn0 9151 elnnnn0b 9154 elnn0z 9200 elznn0nn 9201 elznn0 9202 elznn 9203 nn0ind-raph 9304 nn0ledivnn 9699 expp1 10458 expnegap0 10459 expcllem 10462 nn0ltexp2 10619 facp1 10639 faclbnd 10650 faclbnd3 10652 bcn1 10667 bcval5 10672 hashnncl 10705 fz1f1o 11312 arisum 11435 arisum2 11436 fprodfac 11552 ef0lem 11597 nn0enne 11835 nn0o1gt2 11838 dfgcd2 11943 mulgcd 11945 eucalgf 11983 eucalginv 11984 prmdvdsexpr 12078 rpexp1i 12082 nn0gcdsq 12128 odzdvds 12173 pceq0 12249 fldivp1 12274 pockthg 12283 1arith 12293 dvexp2 13276 lgsdir 13536 lgsabs1 13540 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |