ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rest0 Unicode version

Theorem rest0 14415
Description: The subspace topology induced by the topology  J on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
rest0  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )

Proof of Theorem rest0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 4160 . . . 4  |-  (/)  e.  _V
2 restval 12916 . . . 4  |-  ( ( J  e.  Top  /\  (/) 
e.  _V )  ->  ( Jt  (/) )  =  ran  (
x  e.  J  |->  ( x  i^i  (/) ) ) )
31, 2mpan2 425 . . 3  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  ran  (
x  e.  J  |->  ( x  i^i  (/) ) ) )
4 in0 3485 . . . . . . 7  |-  ( x  i^i  (/) )  =  (/)
51elsn2 3656 . . . . . . 7  |-  ( ( x  i^i  (/) )  e. 
{ (/) }  <->  ( x  i^i  (/) )  =  (/) )
64, 5mpbir 146 . . . . . 6  |-  ( x  i^i  (/) )  e.  { (/)
}
76a1i 9 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( x  i^i  (/) )  e. 
{ (/) } )
87fmpttd 5717 . . . 4  |-  ( J  e.  Top  ->  (
x  e.  J  |->  ( x  i^i  (/) ) ) : J --> { (/) } )
98frnd 5417 . . 3  |-  ( J  e.  Top  ->  ran  ( x  e.  J  |->  ( x  i^i  (/) ) ) 
C_  { (/) } )
103, 9eqsstrd 3219 . 2  |-  ( J  e.  Top  ->  ( Jt  (/) )  C_  { (/) } )
11 resttop 14406 . . . . 5  |-  ( ( J  e.  Top  /\  (/) 
e.  _V )  ->  ( Jt  (/) )  e.  Top )
121, 11mpan2 425 . . . 4  |-  ( J  e.  Top  ->  ( Jt  (/) )  e.  Top )
13 0opn 14242 . . . 4  |-  ( ( Jt  (/) )  e.  Top  -> 
(/)  e.  ( Jt  (/) ) )
1412, 13syl 14 . . 3  |-  ( J  e.  Top  ->  (/)  e.  ( Jt  (/) ) )
1514snssd 3767 . 2  |-  ( J  e.  Top  ->  { (/) } 
C_  ( Jt  (/) ) )
1610, 15eqssd 3200 1  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156   (/)c0 3450   {csn 3622    |-> cmpt 4094   ran crn 4664  (class class class)co 5922   ↾t crest 12910   Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-rest 12912  df-topgen 12931  df-top 14234  df-bases 14279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator