ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxnn0 Unicode version

Theorem elxnn0 9200
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 9199 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
21eleq2i 2237 . 2  |-  ( A  e. NN0* 
<->  A  e.  ( NN0 
u.  { +oo } ) )
3 elun 3268 . 2  |-  ( A  e.  ( NN0  u.  { +oo } )  <->  ( A  e.  NN0  \/  A  e. 
{ +oo } ) )
4 pnfex 7973 . . . 4  |- +oo  e.  _V
54elsn2 3617 . . 3  |-  ( A  e.  { +oo }  <->  A  = +oo )
65orbi2i 757 . 2  |-  ( ( A  e.  NN0  \/  A  e.  { +oo }
)  <->  ( A  e. 
NN0  \/  A  = +oo ) )
72, 3, 63bitri 205 1  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119   {csn 3583   +oocpnf 7951   NN0cn0 9135  NN0*cxnn0 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-xr 7958  df-xnn0 9199
This theorem is referenced by:  xnn0xr  9203  pnf0xnn0  9205  xnn0nemnf  9209  xnn0nnn0pnf  9211  xnn0dcle  9759  xnn0letri  9760  xnn0lenn0nn0  9822  xnn0xadd0  9824
  Copyright terms: Public domain W3C validator