ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxnn0 Unicode version

Theorem elxnn0 9395
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 9394 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
21eleq2i 2274 . 2  |-  ( A  e. NN0* 
<->  A  e.  ( NN0 
u.  { +oo } ) )
3 elun 3322 . 2  |-  ( A  e.  ( NN0  u.  { +oo } )  <->  ( A  e.  NN0  \/  A  e. 
{ +oo } ) )
4 pnfex 8161 . . . 4  |- +oo  e.  _V
54elsn2 3677 . . 3  |-  ( A  e.  { +oo }  <->  A  = +oo )
65orbi2i 764 . 2  |-  ( ( A  e.  NN0  \/  A  e.  { +oo }
)  <->  ( A  e. 
NN0  \/  A  = +oo ) )
72, 3, 63bitri 206 1  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178    u. cun 3172   {csn 3643   +oocpnf 8139   NN0cn0 9330  NN0*cxnn0 9393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-un 4498  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-pnf 8144  df-xr 8146  df-xnn0 9394
This theorem is referenced by:  xnn0xr  9398  pnf0xnn0  9400  xnn0nemnf  9404  xnn0nnn0pnf  9406  xnn0dcle  9959  xnn0letri  9960  xnn0lenn0nn0  10022  xnn0xadd0  10024
  Copyright terms: Public domain W3C validator