| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elxnn0 | Unicode version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| elxnn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xnn0 9313 | 
. . 3
 | |
| 2 | 1 | eleq2i 2263 | 
. 2
 | 
| 3 | elun 3304 | 
. 2
 | |
| 4 | pnfex 8080 | 
. . . 4
 | |
| 5 | 4 | elsn2 3656 | 
. . 3
 | 
| 6 | 5 | orbi2i 763 | 
. 2
 | 
| 7 | 2, 3, 6 | 3bitri 206 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-xr 8065 df-xnn0 9313 | 
| This theorem is referenced by: xnn0xr 9317 pnf0xnn0 9319 xnn0nemnf 9323 xnn0nnn0pnf 9325 xnn0dcle 9877 xnn0letri 9878 xnn0lenn0nn0 9940 xnn0xadd0 9942 | 
| Copyright terms: Public domain | W3C validator |