Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxnn0 | Unicode version |
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
elxnn0 | NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xnn0 9213 | . . 3 NN0* | |
2 | 1 | eleq2i 2242 | . 2 NN0* |
3 | elun 3274 | . 2 | |
4 | pnfex 7985 | . . . 4 | |
5 | 4 | elsn2 3623 | . . 3 |
6 | 5 | orbi2i 762 | . 2 |
7 | 2, 3, 6 | 3bitri 206 | 1 NN0* |
Colors of variables: wff set class |
Syntax hints: wb 105 wo 708 wceq 1353 wcel 2146 cun 3125 csn 3589 cpnf 7963 cn0 9149 NN0*cxnn0 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-cnex 7877 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-xr 7970 df-xnn0 9213 |
This theorem is referenced by: xnn0xr 9217 pnf0xnn0 9219 xnn0nemnf 9223 xnn0nnn0pnf 9225 xnn0dcle 9773 xnn0letri 9774 xnn0lenn0nn0 9836 xnn0xadd0 9838 |
Copyright terms: Public domain | W3C validator |