| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxnn0 | Unicode version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 9359 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | elun 3314 |
. 2
| |
| 4 | pnfex 8126 |
. . . 4
| |
| 5 | 4 | elsn2 3667 |
. . 3
|
| 6 | 5 | orbi2i 764 |
. 2
|
| 7 | 2, 3, 6 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-xr 8111 df-xnn0 9359 |
| This theorem is referenced by: xnn0xr 9363 pnf0xnn0 9365 xnn0nemnf 9369 xnn0nnn0pnf 9371 xnn0dcle 9924 xnn0letri 9925 xnn0lenn0nn0 9987 xnn0xadd0 9989 |
| Copyright terms: Public domain | W3C validator |