ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxnn0 Unicode version

Theorem elxnn0 9214
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 9213 . . 3  |- NN0*  =  ( NN0  u.  { +oo } )
21eleq2i 2242 . 2  |-  ( A  e. NN0* 
<->  A  e.  ( NN0 
u.  { +oo } ) )
3 elun 3274 . 2  |-  ( A  e.  ( NN0  u.  { +oo } )  <->  ( A  e.  NN0  \/  A  e. 
{ +oo } ) )
4 pnfex 7985 . . . 4  |- +oo  e.  _V
54elsn2 3623 . . 3  |-  ( A  e.  { +oo }  <->  A  = +oo )
65orbi2i 762 . 2  |-  ( ( A  e.  NN0  \/  A  e.  { +oo }
)  <->  ( A  e. 
NN0  \/  A  = +oo ) )
72, 3, 63bitri 206 1  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2146    u. cun 3125   {csn 3589   +oocpnf 7963   NN0cn0 9149  NN0*cxnn0 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-un 4427  ax-cnex 7877
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-pnf 7968  df-xr 7970  df-xnn0 9213
This theorem is referenced by:  xnn0xr  9217  pnf0xnn0  9219  xnn0nemnf  9223  xnn0nnn0pnf  9225  xnn0dcle  9773  xnn0letri  9774  xnn0lenn0nn0  9836  xnn0xadd0  9838
  Copyright terms: Public domain W3C validator