| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxnn0 | Unicode version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 9433 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | elun 3345 |
. 2
| |
| 4 | pnfex 8200 |
. . . 4
| |
| 5 | 4 | elsn2 3700 |
. . 3
|
| 6 | 5 | orbi2i 767 |
. 2
|
| 7 | 2, 3, 6 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 ax-cnex 8090 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8183 df-xr 8185 df-xnn0 9433 |
| This theorem is referenced by: xnn0xr 9437 pnf0xnn0 9439 xnn0nemnf 9443 xnn0nnn0pnf 9445 xnn0dcle 9998 xnn0letri 9999 xnn0lenn0nn0 10061 xnn0xadd0 10063 |
| Copyright terms: Public domain | W3C validator |