| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrd | GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| Ref | Expression |
|---|---|
| eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
| eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | eqrd.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | biimpd 144 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 6 | 1, 2, 3, 5 | ssrd 3188 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 7 | 4 | biimprd 158 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 8 | 1, 3, 2, 7 | ssrd 3188 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 9 | 6, 8 | eqssd 3200 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 |
| This theorem is referenced by: dfss4st 3396 imasnopn 14535 |
| Copyright terms: Public domain | W3C validator |