ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd GIF version

Theorem eqrd 3210
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0 𝑥𝜑
eqrd.1 𝑥𝐴
eqrd.2 𝑥𝐵
eqrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
eqrd (𝜑𝐴 = 𝐵)

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3 𝑥𝜑
2 eqrd.1 . . 3 𝑥𝐴
3 eqrd.2 . . 3 𝑥𝐵
4 eqrd.3 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54biimpd 144 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3197 . 2 (𝜑𝐴𝐵)
74biimprd 158 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
81, 3, 2, 7ssrd 3197 . 2 (𝜑𝐵𝐴)
96, 8eqssd 3209 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wnf 1482  wcel 2175  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-in 3171  df-ss 3178
This theorem is referenced by:  dfss4st  3405  imasnopn  14713
  Copyright terms: Public domain W3C validator