Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqrd | GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqrd.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | biimpd 143 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | ssrd 3147 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
7 | 4 | biimprd 157 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
8 | 1, 3, 2, 7 | ssrd 3147 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
9 | 6, 8 | eqssd 3159 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 |
This theorem is referenced by: dfss4st 3355 imasnopn 12939 |
Copyright terms: Public domain | W3C validator |