ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd GIF version

Theorem eqrd 3197
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0 𝑥𝜑
eqrd.1 𝑥𝐴
eqrd.2 𝑥𝐵
eqrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
eqrd (𝜑𝐴 = 𝐵)

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3 𝑥𝜑
2 eqrd.1 . . 3 𝑥𝐴
3 eqrd.2 . . 3 𝑥𝐵
4 eqrd.3 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54biimpd 144 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3184 . 2 (𝜑𝐴𝐵)
74biimprd 158 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
81, 3, 2, 7ssrd 3184 . 2 (𝜑𝐵𝐴)
96, 8eqssd 3196 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166
This theorem is referenced by:  dfss4st  3392  imasnopn  14467
  Copyright terms: Public domain W3C validator