ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd GIF version

Theorem eqrd 3160
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0 𝑥𝜑
eqrd.1 𝑥𝐴
eqrd.2 𝑥𝐵
eqrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
eqrd (𝜑𝐴 = 𝐵)

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3 𝑥𝜑
2 eqrd.1 . . 3 𝑥𝐴
3 eqrd.2 . . 3 𝑥𝐵
4 eqrd.3 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54biimpd 143 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3147 . 2 (𝜑𝐴𝐵)
74biimprd 157 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
81, 3, 2, 7ssrd 3147 . 2 (𝜑𝐵𝐴)
96, 8eqssd 3159 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wnf 1448  wcel 2136  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  dfss4st  3355  imasnopn  12939
  Copyright terms: Public domain W3C validator