Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqelssd | Unicode version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | |
eqelssd.2 |
Ref | Expression |
---|---|
eqelssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 | |
2 | eqelssd.2 | . . . 4 | |
3 | 2 | ex 115 | . . 3 |
4 | 3 | ssrdv 3159 | . 2 |
5 | 1, 4 | eqssd 3170 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: fiuni 6967 ennnfonelemrn 12387 ennnfonelemdm 12388 unirnblps 13493 unirnbl 13494 dvidlemap 13731 dviaddf 13740 dvimulf 13741 dvcj 13744 dvrecap 13748 |
Copyright terms: Public domain | W3C validator |