Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqelssd | Unicode version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | |
eqelssd.2 |
Ref | Expression |
---|---|
eqelssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 | |
2 | eqelssd.2 | . . . 4 | |
3 | 2 | ex 114 | . . 3 |
4 | 3 | ssrdv 3148 | . 2 |
5 | 1, 4 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: fiuni 6943 ennnfonelemrn 12352 ennnfonelemdm 12353 unirnblps 13062 unirnbl 13063 dvidlemap 13300 dviaddf 13309 dvimulf 13310 dvcj 13313 dvrecap 13317 |
Copyright terms: Public domain | W3C validator |