ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd Unicode version

Theorem eqelssd 3243
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1  |-  ( ph  ->  A  C_  B )
eqelssd.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
Assertion
Ref Expression
eqelssd  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2  |-  ( ph  ->  A  C_  B )
2 eqelssd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
43ssrdv 3230 . 2  |-  ( ph  ->  B  C_  A )
51, 4eqssd 3241 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  fiuni  7145  ennnfonelemrn  12990  ennnfonelemdm  12991  unirnblps  15096  unirnbl  15097  dvidlemap  15365  dvidrelem  15366  dvidsslem  15367  dviaddf  15379  dvimulf  15380  dvcj  15383  dvrecap  15387
  Copyright terms: Public domain W3C validator