ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd Unicode version

Theorem eqelssd 3212
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1  |-  ( ph  ->  A  C_  B )
eqelssd.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
Assertion
Ref Expression
eqelssd  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2  |-  ( ph  ->  A  C_  B )
2 eqelssd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
43ssrdv 3199 . 2  |-  ( ph  ->  B  C_  A )
51, 4eqssd 3210 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  fiuni  7082  ennnfonelemrn  12823  ennnfonelemdm  12824  unirnblps  14927  unirnbl  14928  dvidlemap  15196  dvidrelem  15197  dvidsslem  15198  dviaddf  15210  dvimulf  15211  dvcj  15214  dvrecap  15218
  Copyright terms: Public domain W3C validator