ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd Unicode version

Theorem eqelssd 3198
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1  |-  ( ph  ->  A  C_  B )
eqelssd.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
Assertion
Ref Expression
eqelssd  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2  |-  ( ph  ->  A  C_  B )
2 eqelssd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
43ssrdv 3185 . 2  |-  ( ph  ->  B  C_  A )
51, 4eqssd 3196 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  fiuni  7037  ennnfonelemrn  12576  ennnfonelemdm  12577  unirnblps  14590  unirnbl  14591  dvidlemap  14845  dviaddf  14854  dvimulf  14855  dvcj  14858  dvrecap  14862
  Copyright terms: Public domain W3C validator