| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqelssd | Unicode version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 |
|
| eqelssd.2 |
|
| Ref | Expression |
|---|---|
| eqelssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 |
. 2
| |
| 2 | eqelssd.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | ssrdv 3189 |
. 2
|
| 5 | 1, 4 | eqssd 3200 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: fiuni 7044 ennnfonelemrn 12636 ennnfonelemdm 12637 unirnblps 14658 unirnbl 14659 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dviaddf 14941 dvimulf 14942 dvcj 14945 dvrecap 14949 |
| Copyright terms: Public domain | W3C validator |