| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqelssd | Unicode version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 |
|
| eqelssd.2 |
|
| Ref | Expression |
|---|---|
| eqelssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 |
. 2
| |
| 2 | eqelssd.2 |
. . . 4
| |
| 3 | 2 | ex 115 |
. . 3
|
| 4 | 3 | ssrdv 3230 |
. 2
|
| 5 | 1, 4 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: fiuni 7145 ennnfonelemrn 12990 ennnfonelemdm 12991 unirnblps 15096 unirnbl 15097 dvidlemap 15365 dvidrelem 15366 dvidsslem 15367 dviaddf 15379 dvimulf 15380 dvcj 15383 dvrecap 15387 |
| Copyright terms: Public domain | W3C validator |