ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd Unicode version

Theorem eqelssd 3220
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1  |-  ( ph  ->  A  C_  B )
eqelssd.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
Assertion
Ref Expression
eqelssd  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2  |-  ( ph  ->  A  C_  B )
2 eqelssd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
43ssrdv 3207 . 2  |-  ( ph  ->  B  C_  A )
51, 4eqssd 3218 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  fiuni  7106  ennnfonelemrn  12905  ennnfonelemdm  12906  unirnblps  15009  unirnbl  15010  dvidlemap  15278  dvidrelem  15279  dvidsslem  15280  dviaddf  15292  dvimulf  15293  dvcj  15296  dvrecap  15300
  Copyright terms: Public domain W3C validator