ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelssd Unicode version

Theorem eqelssd 3172
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1  |-  ( ph  ->  A  C_  B )
eqelssd.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
Assertion
Ref Expression
eqelssd  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2  |-  ( ph  ->  A  C_  B )
2 eqelssd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
43ssrdv 3159 . 2  |-  ( ph  ->  B  C_  A )
51, 4eqssd 3170 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  fiuni  6967  ennnfonelemrn  12387  ennnfonelemdm  12388  unirnblps  13493  unirnbl  13494  dvidlemap  13731  dviaddf  13740  dvimulf  13741  dvcj  13744  dvrecap  13748
  Copyright terms: Public domain W3C validator