ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncomi Unicode version

Theorem equncomi 3327
Description: Inference form of equncom 3326. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1  |-  A  =  ( B  u.  C
)
Assertion
Ref Expression
equncomi  |-  A  =  ( C  u.  B
)

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2  |-  A  =  ( B  u.  C
)
2 equncom 3326 . 2  |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B
) )
31, 2mpbi 145 1  |-  A  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  disjssun  3532  difprsn1  3783  unidmrn  5234  phplem1  6974  djucomen  7359
  Copyright terms: Public domain W3C validator