ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncomi Unicode version

Theorem equncomi 3253
Description: Inference form of equncom 3252. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1  |-  A  =  ( B  u.  C
)
Assertion
Ref Expression
equncomi  |-  A  =  ( C  u.  B
)

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2  |-  A  =  ( B  u.  C
)
2 equncom 3252 . 2  |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B
) )
31, 2mpbi 144 1  |-  A  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1335    u. cun 3100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106
This theorem is referenced by:  disjssun  3457  difprsn1  3695  unidmrn  5118  phplem1  6797  djucomen  7151
  Copyright terms: Public domain W3C validator