ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equncomi Unicode version

Theorem equncomi 3319
Description: Inference form of equncom 3318. (Contributed by Alan Sare, 18-Feb-2012.)
Hypothesis
Ref Expression
equncomi.1  |-  A  =  ( B  u.  C
)
Assertion
Ref Expression
equncomi  |-  A  =  ( C  u.  B
)

Proof of Theorem equncomi
StepHypRef Expression
1 equncomi.1 . 2  |-  A  =  ( B  u.  C
)
2 equncom 3318 . 2  |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B
) )
31, 2mpbi 145 1  |-  A  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170
This theorem is referenced by:  disjssun  3524  difprsn1  3772  unidmrn  5215  phplem1  6949  djucomen  7328
  Copyright terms: Public domain W3C validator