ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn Unicode version

Theorem unidmrn 5261
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 5106 . . . 4  |-  Rel  `' A
2 relfld 5257 . . . 4  |-  ( Rel  `' A  ->  U. U. `' A  =  ( dom  `' A  u.  ran  `' A ) )
31, 2ax-mp 5 . . 3  |-  U. U. `' A  =  ( dom  `' A  u.  ran  `' A )
43equncomi 3350 . 2  |-  U. U. `' A  =  ( ran  `' A  u.  dom  `' A )
5 dfdm4 4915 . . 3  |-  dom  A  =  ran  `' A
6 df-rn 4730 . . 3  |-  ran  A  =  dom  `' A
75, 6uneq12i 3356 . 2  |-  ( dom 
A  u.  ran  A
)  =  ( ran  `' A  u.  dom  `' A )
84, 7eqtr4i 2253 1  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   U.cuni 3888   `'ccnv 4718   dom cdm 4719   ran crn 4720   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  relcnvfld  5262  dfdm2  5263
  Copyright terms: Public domain W3C validator