ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn Unicode version

Theorem unidmrn 5234
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 5079 . . . 4  |-  Rel  `' A
2 relfld 5230 . . . 4  |-  ( Rel  `' A  ->  U. U. `' A  =  ( dom  `' A  u.  ran  `' A ) )
31, 2ax-mp 5 . . 3  |-  U. U. `' A  =  ( dom  `' A  u.  ran  `' A )
43equncomi 3327 . 2  |-  U. U. `' A  =  ( ran  `' A  u.  dom  `' A )
5 dfdm4 4889 . . 3  |-  dom  A  =  ran  `' A
6 df-rn 4704 . . 3  |-  ran  A  =  dom  `' A
75, 6uneq12i 3333 . 2  |-  ( dom 
A  u.  ran  A
)  =  ( ran  `' A  u.  dom  `' A )
84, 7eqtr4i 2231 1  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   U.cuni 3864   `'ccnv 4692   dom cdm 4693   ran crn 4694   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  relcnvfld  5235  dfdm2  5236
  Copyright terms: Public domain W3C validator