ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn Unicode version

Theorem unidmrn 5198
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 5043 . . . 4  |-  Rel  `' A
2 relfld 5194 . . . 4  |-  ( Rel  `' A  ->  U. U. `' A  =  ( dom  `' A  u.  ran  `' A ) )
31, 2ax-mp 5 . . 3  |-  U. U. `' A  =  ( dom  `' A  u.  ran  `' A )
43equncomi 3305 . 2  |-  U. U. `' A  =  ( ran  `' A  u.  dom  `' A )
5 dfdm4 4854 . . 3  |-  dom  A  =  ran  `' A
6 df-rn 4670 . . 3  |-  ran  A  =  dom  `' A
75, 6uneq12i 3311 . 2  |-  ( dom 
A  u.  ran  A
)  =  ( ran  `' A  u.  dom  `' A )
84, 7eqtr4i 2217 1  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151   U.cuni 3835   `'ccnv 4658   dom cdm 4659   ran crn 4660   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  relcnvfld  5199  dfdm2  5200
  Copyright terms: Public domain W3C validator