ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn Unicode version

Theorem unidmrn 5136
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 4982 . . . 4  |-  Rel  `' A
2 relfld 5132 . . . 4  |-  ( Rel  `' A  ->  U. U. `' A  =  ( dom  `' A  u.  ran  `' A ) )
31, 2ax-mp 5 . . 3  |-  U. U. `' A  =  ( dom  `' A  u.  ran  `' A )
43equncomi 3268 . 2  |-  U. U. `' A  =  ( ran  `' A  u.  dom  `' A )
5 dfdm4 4796 . . 3  |-  dom  A  =  ran  `' A
6 df-rn 4615 . . 3  |-  ran  A  =  dom  `' A
75, 6uneq12i 3274 . 2  |-  ( dom 
A  u.  ran  A
)  =  ( ran  `' A  u.  dom  `' A )
84, 7eqtr4i 2189 1  |-  U. U. `' A  =  ( dom  A  u.  ran  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114   U.cuni 3789   `'ccnv 4603   dom cdm 4604   ran crn 4605   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  relcnvfld  5137  dfdm2  5138
  Copyright terms: Public domain W3C validator