| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem1 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| phplem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 4678 |
. . 3
| |
| 2 | nordeq 4610 |
. . . 4
| |
| 3 | disjsn2 3706 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | 1, 4 | sylan 283 |
. 2
|
| 6 | undif4 3531 |
. . 3
| |
| 7 | df-suc 4436 |
. . . . 5
| |
| 8 | 7 | equncomi 3327 |
. . . 4
|
| 9 | 8 | difeq1i 3295 |
. . 3
|
| 10 | 6, 9 | eqtr4di 2258 |
. 2
|
| 11 | 5, 10 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: phplem2 6975 |
| Copyright terms: Public domain | W3C validator |