ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 Unicode version

Theorem difprsn1 3719
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2424 . 2  |-  ( B  =/=  A  <->  A  =/=  B )
2 df-pr 3590 . . . . . 6  |-  { A ,  B }  =  ( { A }  u.  { B } )
32equncomi 3273 . . . . 5  |-  { A ,  B }  =  ( { B }  u.  { A } )
43difeq1i 3241 . . . 4  |-  ( { A ,  B }  \  { A } )  =  ( ( { B }  u.  { A } )  \  { A } )
5 difun2 3494 . . . 4  |-  ( ( { B }  u.  { A } )  \  { A } )  =  ( { B }  \  { A } )
64, 5eqtri 2191 . . 3  |-  ( { A ,  B }  \  { A } )  =  ( { B }  \  { A }
)
7 disjsn2 3646 . . . 4  |-  ( B  =/=  A  ->  ( { B }  i^i  { A } )  =  (/) )
8 disj3 3467 . . . 4  |-  ( ( { B }  i^i  { A } )  =  (/) 
<->  { B }  =  ( { B }  \  { A } ) )
97, 8sylib 121 . . 3  |-  ( B  =/=  A  ->  { B }  =  ( { B }  \  { A } ) )
106, 9eqtr4id 2222 . 2  |-  ( B  =/=  A  ->  ( { A ,  B }  \  { A } )  =  { B }
)
111, 10sylbir 134 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    =/= wne 2340    \ cdif 3118    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590
This theorem is referenced by:  difprsn2  3720
  Copyright terms: Public domain W3C validator