ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 Unicode version

Theorem difprsn1 3778
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2461 . 2  |-  ( B  =/=  A  <->  A  =/=  B )
2 df-pr 3645 . . . . . 6  |-  { A ,  B }  =  ( { A }  u.  { B } )
32equncomi 3323 . . . . 5  |-  { A ,  B }  =  ( { B }  u.  { A } )
43difeq1i 3291 . . . 4  |-  ( { A ,  B }  \  { A } )  =  ( ( { B }  u.  { A } )  \  { A } )
5 difun2 3544 . . . 4  |-  ( ( { B }  u.  { A } )  \  { A } )  =  ( { B }  \  { A } )
64, 5eqtri 2227 . . 3  |-  ( { A ,  B }  \  { A } )  =  ( { B }  \  { A }
)
7 disjsn2 3701 . . . 4  |-  ( B  =/=  A  ->  ( { B }  i^i  { A } )  =  (/) )
8 disj3 3517 . . . 4  |-  ( ( { B }  i^i  { A } )  =  (/) 
<->  { B }  =  ( { B }  \  { A } ) )
97, 8sylib 122 . . 3  |-  ( B  =/=  A  ->  { B }  =  ( { B }  \  { A } ) )
106, 9eqtr4id 2258 . 2  |-  ( B  =/=  A  ->  ( { A ,  B }  \  { A } )  =  { B }
)
111, 10sylbir 135 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    =/= wne 2377    \ cdif 3167    u. cun 3168    i^i cin 3169   (/)c0 3464   {csn 3638   {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-pr 3645
This theorem is referenced by:  difprsn2  3779
  Copyright terms: Public domain W3C validator