ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 Unicode version

Theorem difprsn1 3806
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2484 . 2  |-  ( B  =/=  A  <->  A  =/=  B )
2 df-pr 3673 . . . . . 6  |-  { A ,  B }  =  ( { A }  u.  { B } )
32equncomi 3350 . . . . 5  |-  { A ,  B }  =  ( { B }  u.  { A } )
43difeq1i 3318 . . . 4  |-  ( { A ,  B }  \  { A } )  =  ( ( { B }  u.  { A } )  \  { A } )
5 difun2 3571 . . . 4  |-  ( ( { B }  u.  { A } )  \  { A } )  =  ( { B }  \  { A } )
64, 5eqtri 2250 . . 3  |-  ( { A ,  B }  \  { A } )  =  ( { B }  \  { A }
)
7 disjsn2 3729 . . . 4  |-  ( B  =/=  A  ->  ( { B }  i^i  { A } )  =  (/) )
8 disj3 3544 . . . 4  |-  ( ( { B }  i^i  { A } )  =  (/) 
<->  { B }  =  ( { B }  \  { A } ) )
97, 8sylib 122 . . 3  |-  ( B  =/=  A  ->  { B }  =  ( { B }  \  { A } ) )
106, 9eqtr4id 2281 . 2  |-  ( B  =/=  A  ->  ( { A ,  B }  \  { A } )  =  { B }
)
111, 10sylbir 135 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    =/= wne 2400    \ cdif 3194    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673
This theorem is referenced by:  difprsn2  3807
  Copyright terms: Public domain W3C validator