ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 Unicode version

Theorem difprsn1 3771
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2459 . 2  |-  ( B  =/=  A  <->  A  =/=  B )
2 df-pr 3639 . . . . . 6  |-  { A ,  B }  =  ( { A }  u.  { B } )
32equncomi 3318 . . . . 5  |-  { A ,  B }  =  ( { B }  u.  { A } )
43difeq1i 3286 . . . 4  |-  ( { A ,  B }  \  { A } )  =  ( ( { B }  u.  { A } )  \  { A } )
5 difun2 3539 . . . 4  |-  ( ( { B }  u.  { A } )  \  { A } )  =  ( { B }  \  { A } )
64, 5eqtri 2225 . . 3  |-  ( { A ,  B }  \  { A } )  =  ( { B }  \  { A }
)
7 disjsn2 3695 . . . 4  |-  ( B  =/=  A  ->  ( { B }  i^i  { A } )  =  (/) )
8 disj3 3512 . . . 4  |-  ( ( { B }  i^i  { A } )  =  (/) 
<->  { B }  =  ( { B }  \  { A } ) )
97, 8sylib 122 . . 3  |-  ( B  =/=  A  ->  { B }  =  ( { B }  \  { A } ) )
106, 9eqtr4id 2256 . 2  |-  ( B  =/=  A  ->  ( { A ,  B }  \  { A } )  =  { B }
)
111, 10sylbir 135 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    =/= wne 2375    \ cdif 3162    u. cun 3163    i^i cin 3164   (/)c0 3459   {csn 3632   {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639
This theorem is referenced by:  difprsn2  3772
  Copyright terms: Public domain W3C validator