Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq1 | Unicode version |
Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . 4 | |
2 | 1 | orbi1d 781 | . . 3 |
3 | elun 3263 | . . 3 | |
4 | elun 3263 | . . 3 | |
5 | 2, 3, 4 | 3bitr4g 222 | . 2 |
6 | 5 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: uneq2 3270 uneq12 3271 uneq1i 3272 uneq1d 3275 prprc1 3684 uniprg 3804 unexb 4420 relresfld 5133 relcoi1 5135 rdgeq2 6340 xpider 6572 findcard2 6855 findcard2s 6856 unfiexmid 6883 bdunexb 13802 bj-unexg 13803 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |