| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1 | Unicode version | ||
| Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | orbi1d 793 |
. . 3
|
| 3 | elun 3314 |
. . 3
| |
| 4 | elun 3314 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: uneq2 3321 uneq12 3322 uneq1i 3323 uneq1d 3326 prprc1 3741 uniprg 3865 exmid1stab 4252 unexb 4489 relresfld 5212 relcoi1 5214 rdgeq2 6458 xpider 6693 findcard2 6986 findcard2s 6987 unfiexmid 7015 plyval 15204 bdunexb 15860 bj-unexg 15861 |
| Copyright terms: Public domain | W3C validator |