| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1 | Unicode version | ||
| Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . 4
| |
| 2 | 1 | orbi1d 796 |
. . 3
|
| 3 | elun 3345 |
. . 3
| |
| 4 | elun 3345 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: uneq2 3352 uneq12 3353 uneq1i 3354 uneq1d 3357 prprc1 3775 uniprg 3903 exmid1stab 4292 unexb 4533 relresfld 5258 relcoi1 5260 rdgeq2 6518 xpider 6753 findcard2 7051 findcard2s 7052 unfiexmid 7080 plyval 15406 bdunexb 16283 bj-unexg 16284 |
| Copyright terms: Public domain | W3C validator |