Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1 Unicode version

Theorem uneq1 3254
 Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
uneq1

Proof of Theorem uneq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2221 . . . 4
21orbi1d 781 . . 3
3 elun 3248 . . 3
4 elun 3248 . . 3
52, 3, 43bitr4g 222 . 2
65eqrdv 2155 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 698   wceq 1335   wcel 2128   cun 3100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106 This theorem is referenced by:  uneq2  3255  uneq12  3256  uneq1i  3257  uneq1d  3260  prprc1  3667  uniprg  3787  unexb  4401  relresfld  5114  relcoi1  5116  rdgeq2  6316  xpider  6548  findcard2  6831  findcard2s  6832  unfiexmid  6859  bdunexb  13466  bj-unexg  13467  exmid1stab  13543
 Copyright terms: Public domain W3C validator