| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1 | Unicode version | ||
| Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . 4
| |
| 2 | 1 | orbi1d 793 |
. . 3
|
| 3 | elun 3322 |
. . 3
| |
| 4 | elun 3322 |
. . 3
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
. 2
|
| 6 | 5 | eqrdv 2205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: uneq2 3329 uneq12 3330 uneq1i 3331 uneq1d 3334 prprc1 3751 uniprg 3879 exmid1stab 4268 unexb 4507 relresfld 5231 relcoi1 5233 rdgeq2 6481 xpider 6716 findcard2 7012 findcard2s 7013 unfiexmid 7041 plyval 15319 bdunexb 16055 bj-unexg 16056 |
| Copyright terms: Public domain | W3C validator |