Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq1 | Unicode version |
Description: Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2221 | . . . 4 | |
2 | 1 | orbi1d 781 | . . 3 |
3 | elun 3248 | . . 3 | |
4 | elun 3248 | . . 3 | |
5 | 2, 3, 4 | 3bitr4g 222 | . 2 |
6 | 5 | eqrdv 2155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1335 wcel 2128 cun 3100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 |
This theorem is referenced by: uneq2 3255 uneq12 3256 uneq1i 3257 uneq1d 3260 prprc1 3667 uniprg 3787 unexb 4401 relresfld 5114 relcoi1 5116 rdgeq2 6316 xpider 6548 findcard2 6831 findcard2s 6832 unfiexmid 6859 bdunexb 13466 bj-unexg 13467 exmid1stab 13543 |
Copyright terms: Public domain | W3C validator |