ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen Unicode version

Theorem djucomen 7089
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6329 . . . 4  |-  1o  e.  _V
2 xpsnen2g 6731 . . . 4  |-  ( ( 1o  e.  _V  /\  A  e.  V )  ->  ( { 1o }  X.  A )  ~~  A
)
31, 2mpan 421 . . 3  |-  ( A  e.  V  ->  ( { 1o }  X.  A
)  ~~  A )
4 0ex 4063 . . . 4  |-  (/)  e.  _V
5 xpsnen2g 6731 . . . 4  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
64, 5mpan 421 . . 3  |-  ( B  e.  W  ->  ( { (/) }  X.  B
)  ~~  B )
7 ensym 6683 . . . 4  |-  ( ( { 1o }  X.  A )  ~~  A  ->  A  ~~  ( { 1o }  X.  A
) )
8 ensym 6683 . . . 4  |-  ( ( { (/) }  X.  B
)  ~~  B  ->  B 
~~  ( { (/) }  X.  B ) )
9 incom 3273 . . . . . 6  |-  ( ( { 1o }  X.  A )  i^i  ( { (/) }  X.  B
) )  =  ( ( { (/) }  X.  B )  i^i  ( { 1o }  X.  A
) )
10 xp01disjl 6339 . . . . . 6  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  A ) )  =  (/)
119, 10eqtri 2161 . . . . 5  |-  ( ( { 1o }  X.  A )  i^i  ( { (/) }  X.  B
) )  =  (/)
12 djuenun 7085 . . . . 5  |-  ( ( A  ~~  ( { 1o }  X.  A
)  /\  B  ~~  ( { (/) }  X.  B
)  /\  ( ( { 1o }  X.  A
)  i^i  ( { (/)
}  X.  B ) )  =  (/) )  -> 
( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B ) ) )
1311, 12mp3an3 1305 . . . 4  |-  ( ( A  ~~  ( { 1o }  X.  A
)  /\  B  ~~  ( { (/) }  X.  B
) )  ->  ( A B )  ~~  (
( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) ) )
147, 8, 13syl2an 287 . . 3  |-  ( ( ( { 1o }  X.  A )  ~~  A  /\  ( { (/) }  X.  B )  ~~  B
)  ->  ( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) ) )
153, 6, 14syl2an 287 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B ) ) )
16 df-dju 6931 . . 3  |-  ( B A )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  A
) )
1716equncomi 3227 . 2  |-  ( B A )  =  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) )
1815, 17breqtrrdi 3978 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689    u. cun 3074    i^i cin 3075   (/)c0 3368   {csn 3532   class class class wbr 3937    X. cxp 4545   1oc1o 6314    ~~ cen 6640   ⊔ cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-er 6437  df-en 6643  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator