ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjssun Unicode version

Theorem disjssun 3555
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )

Proof of Theorem disjssun
StepHypRef Expression
1 indi 3451 . . . . 5  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
21equncomi 3350 . . . 4  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  C )  u.  ( A  i^i  B ) )
3 uneq2 3352 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( ( A  i^i  C
)  u.  (/) ) )
4 un0 3525 . . . . 5  |-  ( ( A  i^i  C )  u.  (/) )  =  ( A  i^i  C )
53, 4eqtrdi 2278 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( A  i^i  C ) )
62, 5eqtrid 2274 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( A  i^i  ( B  u.  C ) )  =  ( A  i^i  C
) )
76eqeq1d 2238 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  ( B  u.  C ) )  =  A  <->  ( A  i^i  C )  =  A ) )
8 df-ss 3210 . 2  |-  ( A 
C_  ( B  u.  C )  <->  ( A  i^i  ( B  u.  C
) )  =  A )
9 df-ss 3210 . 2  |-  ( A 
C_  C  <->  ( A  i^i  C )  =  A )
107, 8, 93bitr4g 223 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator