ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjssun Unicode version

Theorem disjssun 3500
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )

Proof of Theorem disjssun
StepHypRef Expression
1 indi 3396 . . . . 5  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
21equncomi 3295 . . . 4  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  C )  u.  ( A  i^i  B ) )
3 uneq2 3297 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( ( A  i^i  C
)  u.  (/) ) )
4 un0 3470 . . . . 5  |-  ( ( A  i^i  C )  u.  (/) )  =  ( A  i^i  C )
53, 4eqtrdi 2237 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( A  i^i  C ) )
62, 5eqtrid 2233 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( A  i^i  ( B  u.  C ) )  =  ( A  i^i  C
) )
76eqeq1d 2197 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  ( B  u.  C ) )  =  A  <->  ( A  i^i  C )  =  A ) )
8 df-ss 3156 . 2  |-  ( A 
C_  ( B  u.  C )  <->  ( A  i^i  ( B  u.  C
) )  =  A )
9 df-ss 3156 . 2  |-  ( A 
C_  C  <->  ( A  i^i  C )  =  A )
107, 8, 93bitr4g 223 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363    u. cun 3141    i^i cin 3142    C_ wss 3143   (/)c0 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator