| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exss | Unicode version | ||
| Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| Ref | Expression |
|---|---|
| exss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0m 3478 |
. . 3
| |
| 2 | df-rab 2484 |
. . . . 5
| |
| 3 | 2 | eleq2i 2263 |
. . . 4
|
| 4 | 3 | exbii 1619 |
. . 3
|
| 5 | 1, 4 | bitr3i 186 |
. 2
|
| 6 | vex 2766 |
. . . . . 6
| |
| 7 | 6 | snss 3757 |
. . . . 5
|
| 8 | ssab2 3267 |
. . . . . 6
| |
| 9 | sstr2 3190 |
. . . . . 6
| |
| 10 | 8, 9 | mpi 15 |
. . . . 5
|
| 11 | 7, 10 | sylbi 121 |
. . . 4
|
| 12 | simpr 110 |
. . . . . . . 8
| |
| 13 | equsb1 1799 |
. . . . . . . . 9
| |
| 14 | velsn 3639 |
. . . . . . . . . 10
| |
| 15 | 14 | sbbii 1779 |
. . . . . . . . 9
|
| 16 | 13, 15 | mpbir 146 |
. . . . . . . 8
|
| 17 | 12, 16 | jctil 312 |
. . . . . . 7
|
| 18 | df-clab 2183 |
. . . . . . . 8
| |
| 19 | sban 1974 |
. . . . . . . 8
| |
| 20 | 18, 19 | bitri 184 |
. . . . . . 7
|
| 21 | df-rab 2484 |
. . . . . . . . 9
| |
| 22 | 21 | eleq2i 2263 |
. . . . . . . 8
|
| 23 | df-clab 2183 |
. . . . . . . . 9
| |
| 24 | sban 1974 |
. . . . . . . . 9
| |
| 25 | 23, 24 | bitri 184 |
. . . . . . . 8
|
| 26 | 22, 25 | bitri 184 |
. . . . . . 7
|
| 27 | 17, 20, 26 | 3imtr4i 201 |
. . . . . 6
|
| 28 | elex2 2779 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | rabn0m 3478 |
. . . . 5
| |
| 31 | 29, 30 | sylib 122 |
. . . 4
|
| 32 | 6 | snex 4218 |
. . . . 5
|
| 33 | sseq1 3206 |
. . . . . 6
| |
| 34 | rexeq 2694 |
. . . . . 6
| |
| 35 | 33, 34 | anbi12d 473 |
. . . . 5
|
| 36 | 32, 35 | spcev 2859 |
. . . 4
|
| 37 | 11, 31, 36 | syl2anc 411 |
. . 3
|
| 38 | 37 | exlimiv 1612 |
. 2
|
| 39 | 5, 38 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |