| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | Unicode version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5576 |
. . . . . 6
| |
| 2 | exsimpr 1641 |
. . . . . 6
| |
| 3 | 1, 2 | sylbi 121 |
. . . . 5
|
| 4 | equsb1 1808 |
. . . . . . . 8
| |
| 5 | spsbbi 1867 |
. . . . . . . 8
| |
| 6 | 4, 5 | mpbiri 168 |
. . . . . . 7
|
| 7 | nfv 1551 |
. . . . . . . 8
| |
| 8 | breq2 4049 |
. . . . . . . 8
| |
| 9 | 7, 8 | sbie 1814 |
. . . . . . 7
|
| 10 | 6, 9 | sylib 122 |
. . . . . 6
|
| 11 | 10 | eximi 1623 |
. . . . 5
|
| 12 | 3, 11 | syl 14 |
. . . 4
|
| 13 | 12 | anim2i 342 |
. . 3
|
| 14 | 19.42v 1930 |
. . 3
| |
| 15 | 13, 14 | sylibr 134 |
. 2
|
| 16 | releldm 4914 |
. . 3
| |
| 17 | 16 | exlimiv 1621 |
. 2
|
| 18 | 15, 17 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-dm 4686 df-iota 5233 df-fv 5280 |
| This theorem is referenced by: mptrcl 5664 elfvmptrab1 5676 elmpocl 6143 oprssdmm 6259 mpoxopn0yelv 6327 eluzel2 9655 hashinfom 10925 basmex 12924 basmexd 12925 relelbasov 12927 ismgmn0 13223 rrgmex 14056 lssmex 14150 lidlmex 14270 2idlmex 14296 istopon 14518 istps 14537 topontopn 14542 eltg4i 14560 eltg3 14562 tg1 14564 tg2 14565 tgclb 14570 cldrcl 14607 neiss2 14647 lmrcl 14696 cnprcl2k 14711 metflem 14854 xmetf 14855 ismet2 14859 xmeteq0 14864 xmettri2 14866 xmetpsmet 14874 xmetres2 14884 blfvalps 14890 blex 14892 blvalps 14893 blval 14894 blfps 14914 blf 14915 mopnval 14947 isxms2 14957 comet 15004 1vgrex 15650 |
| Copyright terms: Public domain | W3C validator |