| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | Unicode version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5625 |
. . . . . 6
| |
| 2 | exsimpr 1664 |
. . . . . 6
| |
| 3 | 1, 2 | sylbi 121 |
. . . . 5
|
| 4 | equsb1 1831 |
. . . . . . . 8
| |
| 5 | spsbbi 1890 |
. . . . . . . 8
| |
| 6 | 4, 5 | mpbiri 168 |
. . . . . . 7
|
| 7 | nfv 1574 |
. . . . . . . 8
| |
| 8 | breq2 4087 |
. . . . . . . 8
| |
| 9 | 7, 8 | sbie 1837 |
. . . . . . 7
|
| 10 | 6, 9 | sylib 122 |
. . . . . 6
|
| 11 | 10 | eximi 1646 |
. . . . 5
|
| 12 | 3, 11 | syl 14 |
. . . 4
|
| 13 | 12 | anim2i 342 |
. . 3
|
| 14 | 19.42v 1953 |
. . 3
| |
| 15 | 13, 14 | sylibr 134 |
. 2
|
| 16 | releldm 4959 |
. . 3
| |
| 17 | 16 | exlimiv 1644 |
. 2
|
| 18 | 15, 17 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-dm 4729 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: mptrcl 5717 elfvmptrab1 5729 elmpocl 6200 relmptopab 6207 oprssdmm 6317 mpoxopn0yelv 6385 eluzel2 9727 hashinfom 11000 basmex 13092 basmexd 13093 relelbasov 13095 ismgmn0 13391 rrgmex 14225 lssmex 14319 lidlmex 14439 2idlmex 14465 istopon 14687 istps 14706 topontopn 14711 eltg4i 14729 eltg3 14731 tg1 14733 tg2 14734 tgclb 14739 cldrcl 14776 neiss2 14816 lmrcl 14866 cnprcl2k 14880 metflem 15023 xmetf 15024 ismet2 15028 xmeteq0 15033 xmettri2 15035 xmetpsmet 15043 xmetres2 15053 blfvalps 15059 blex 15061 blvalps 15062 blval 15063 blfps 15083 blf 15084 mopnval 15116 isxms2 15126 comet 15173 1vgrex 15821 umgrnloopv 15914 |
| Copyright terms: Public domain | W3C validator |