Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relelfvdm | Unicode version |
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
Ref | Expression |
---|---|
relelfvdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5492 | . . . . . 6 | |
2 | exsimpr 1611 | . . . . . 6 | |
3 | 1, 2 | sylbi 120 | . . . . 5 |
4 | equsb1 1778 | . . . . . . . 8 | |
5 | spsbbi 1837 | . . . . . . . 8 | |
6 | 4, 5 | mpbiri 167 | . . . . . . 7 |
7 | nfv 1521 | . . . . . . . 8 | |
8 | breq2 3991 | . . . . . . . 8 | |
9 | 7, 8 | sbie 1784 | . . . . . . 7 |
10 | 6, 9 | sylib 121 | . . . . . 6 |
11 | 10 | eximi 1593 | . . . . 5 |
12 | 3, 11 | syl 14 | . . . 4 |
13 | 12 | anim2i 340 | . . 3 |
14 | 19.42v 1899 | . . 3 | |
15 | 13, 14 | sylibr 133 | . 2 |
16 | releldm 4844 | . . 3 | |
17 | 16 | exlimiv 1591 | . 2 |
18 | 15, 17 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 wsb 1755 wcel 2141 class class class wbr 3987 cdm 4609 wrel 4614 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-dm 4619 df-iota 5158 df-fv 5204 |
This theorem is referenced by: mptrcl 5576 elfvmptrab1 5588 elmpocl 6044 oprssdmm 6147 mpoxopn0yelv 6215 eluzel2 9479 hashinfom 10699 basmex 12461 basmexd 12462 ismgmn0 12599 istopon 12764 istps 12783 topontopn 12788 eltg4i 12808 eltg3 12810 tg1 12812 tg2 12813 tgclb 12818 cldrcl 12855 neiss2 12895 lmrcl 12944 cnprcl2k 12959 metflem 13102 xmetf 13103 ismet2 13107 xmeteq0 13112 xmettri2 13114 xmetpsmet 13122 xmetres2 13132 blfvalps 13138 blex 13140 blvalps 13141 blval 13142 blfps 13162 blf 13163 mopnval 13195 isxms2 13205 comet 13252 |
Copyright terms: Public domain | W3C validator |