ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelfvdm Unicode version

Theorem relelfvdm 5526
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
Assertion
Ref Expression
relelfvdm  |-  ( ( Rel  F  /\  A  e.  ( F `  B
) )  ->  B  e.  dom  F )

Proof of Theorem relelfvdm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfv 5492 . . . . . 6  |-  ( A  e.  ( F `  B )  <->  E. x
( A  e.  x  /\  A. y ( B F y  <->  y  =  x ) ) )
2 exsimpr 1611 . . . . . 6  |-  ( E. x ( A  e.  x  /\  A. y
( B F y  <-> 
y  =  x ) )  ->  E. x A. y ( B F y  <->  y  =  x ) )
31, 2sylbi 120 . . . . 5  |-  ( A  e.  ( F `  B )  ->  E. x A. y ( B F y  <->  y  =  x ) )
4 equsb1 1778 . . . . . . . 8  |-  [ x  /  y ] y  =  x
5 spsbbi 1837 . . . . . . . 8  |-  ( A. y ( B F y  <->  y  =  x )  ->  ( [
x  /  y ] B F y  <->  [ x  /  y ] y  =  x ) )
64, 5mpbiri 167 . . . . . . 7  |-  ( A. y ( B F y  <->  y  =  x )  ->  [ x  /  y ] B F y )
7 nfv 1521 . . . . . . . 8  |-  F/ y  B F x
8 breq2 3991 . . . . . . . 8  |-  ( y  =  x  ->  ( B F y  <->  B F x ) )
97, 8sbie 1784 . . . . . . 7  |-  ( [ x  /  y ] B F y  <->  B F x )
106, 9sylib 121 . . . . . 6  |-  ( A. y ( B F y  <->  y  =  x )  ->  B F x )
1110eximi 1593 . . . . 5  |-  ( E. x A. y ( B F y  <->  y  =  x )  ->  E. x  B F x )
123, 11syl 14 . . . 4  |-  ( A  e.  ( F `  B )  ->  E. x  B F x )
1312anim2i 340 . . 3  |-  ( ( Rel  F  /\  A  e.  ( F `  B
) )  ->  ( Rel  F  /\  E. x  B F x ) )
14 19.42v 1899 . . 3  |-  ( E. x ( Rel  F  /\  B F x )  <-> 
( Rel  F  /\  E. x  B F x ) )
1513, 14sylibr 133 . 2  |-  ( ( Rel  F  /\  A  e.  ( F `  B
) )  ->  E. x
( Rel  F  /\  B F x ) )
16 releldm 4844 . . 3  |-  ( ( Rel  F  /\  B F x )  ->  B  e.  dom  F )
1716exlimiv 1591 . 2  |-  ( E. x ( Rel  F  /\  B F x )  ->  B  e.  dom  F )
1815, 17syl 14 1  |-  ( ( Rel  F  /\  A  e.  ( F `  B
) )  ->  B  e.  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485   [wsb 1755    e. wcel 2141   class class class wbr 3987   dom cdm 4609   Rel wrel 4614   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-dm 4619  df-iota 5158  df-fv 5204
This theorem is referenced by:  mptrcl  5576  elfvmptrab1  5588  elmpocl  6044  oprssdmm  6147  mpoxopn0yelv  6215  eluzel2  9479  hashinfom  10699  basmex  12461  basmexd  12462  ismgmn0  12599  istopon  12764  istps  12783  topontopn  12788  eltg4i  12808  eltg3  12810  tg1  12812  tg2  12813  tgclb  12818  cldrcl  12855  neiss2  12895  lmrcl  12944  cnprcl2k  12959  metflem  13102  xmetf  13103  ismet2  13107  xmeteq0  13112  xmettri2  13114  xmetpsmet  13122  xmetres2  13132  blfvalps  13138  blex  13140  blvalps  13141  blval  13142  blfps  13162  blf  13163  mopnval  13195  isxms2  13205  comet  13252
  Copyright terms: Public domain W3C validator