Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relelfvdm | Unicode version |
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
Ref | Expression |
---|---|
relelfvdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5484 | . . . . . 6 | |
2 | exsimpr 1606 | . . . . . 6 | |
3 | 1, 2 | sylbi 120 | . . . . 5 |
4 | equsb1 1773 | . . . . . . . 8 | |
5 | spsbbi 1832 | . . . . . . . 8 | |
6 | 4, 5 | mpbiri 167 | . . . . . . 7 |
7 | nfv 1516 | . . . . . . . 8 | |
8 | breq2 3986 | . . . . . . . 8 | |
9 | 7, 8 | sbie 1779 | . . . . . . 7 |
10 | 6, 9 | sylib 121 | . . . . . 6 |
11 | 10 | eximi 1588 | . . . . 5 |
12 | 3, 11 | syl 14 | . . . 4 |
13 | 12 | anim2i 340 | . . 3 |
14 | 19.42v 1894 | . . 3 | |
15 | 13, 14 | sylibr 133 | . 2 |
16 | releldm 4839 | . . 3 | |
17 | 16 | exlimiv 1586 | . 2 |
18 | 15, 17 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wsb 1750 wcel 2136 class class class wbr 3982 cdm 4604 wrel 4609 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 df-iota 5153 df-fv 5196 |
This theorem is referenced by: mptrcl 5568 elfvmptrab1 5580 elmpocl 6036 oprssdmm 6139 mpoxopn0yelv 6207 eluzel2 9471 hashinfom 10691 basmex 12452 ismgmn0 12589 istopon 12651 istps 12670 topontopn 12675 eltg4i 12695 eltg3 12697 tg1 12699 tg2 12700 tgclb 12705 cldrcl 12742 neiss2 12782 lmrcl 12831 cnprcl2k 12846 metflem 12989 xmetf 12990 ismet2 12994 xmeteq0 12999 xmettri2 13001 xmetpsmet 13009 xmetres2 13019 blfvalps 13025 blex 13027 blvalps 13028 blval 13029 blfps 13049 blf 13050 mopnval 13082 isxms2 13092 comet 13139 |
Copyright terms: Public domain | W3C validator |