Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relelfvdm | Unicode version |
Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
Ref | Expression |
---|---|
relelfvdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5494 | . . . . . 6 | |
2 | exsimpr 1611 | . . . . . 6 | |
3 | 1, 2 | sylbi 120 | . . . . 5 |
4 | equsb1 1778 | . . . . . . . 8 | |
5 | spsbbi 1837 | . . . . . . . 8 | |
6 | 4, 5 | mpbiri 167 | . . . . . . 7 |
7 | nfv 1521 | . . . . . . . 8 | |
8 | breq2 3993 | . . . . . . . 8 | |
9 | 7, 8 | sbie 1784 | . . . . . . 7 |
10 | 6, 9 | sylib 121 | . . . . . 6 |
11 | 10 | eximi 1593 | . . . . 5 |
12 | 3, 11 | syl 14 | . . . 4 |
13 | 12 | anim2i 340 | . . 3 |
14 | 19.42v 1899 | . . 3 | |
15 | 13, 14 | sylibr 133 | . 2 |
16 | releldm 4846 | . . 3 | |
17 | 16 | exlimiv 1591 | . 2 |
18 | 15, 17 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 wsb 1755 wcel 2141 class class class wbr 3989 cdm 4611 wrel 4616 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-dm 4621 df-iota 5160 df-fv 5206 |
This theorem is referenced by: mptrcl 5578 elfvmptrab1 5590 elmpocl 6047 oprssdmm 6150 mpoxopn0yelv 6218 eluzel2 9492 hashinfom 10712 basmex 12474 basmexd 12475 ismgmn0 12612 istopon 12805 istps 12824 topontopn 12829 eltg4i 12849 eltg3 12851 tg1 12853 tg2 12854 tgclb 12859 cldrcl 12896 neiss2 12936 lmrcl 12985 cnprcl2k 13000 metflem 13143 xmetf 13144 ismet2 13148 xmeteq0 13153 xmettri2 13155 xmetpsmet 13163 xmetres2 13173 blfvalps 13179 blex 13181 blvalps 13182 blval 13183 blfps 13203 blf 13204 mopnval 13236 isxms2 13246 comet 13293 |
Copyright terms: Public domain | W3C validator |