ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqv Unicode version

Theorem eqv 3470
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv  |-  ( A  =  _V  <->  A. x  x  e.  A )
Distinct variable group:    x, A

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2190 . 2  |-  ( A  =  _V  <->  A. x
( x  e.  A  <->  x  e.  _V ) )
2 vex 2766 . . . 4  |-  x  e. 
_V
32tbt 247 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  <->  x  e.  _V ) )
43albii 1484 . 2  |-  ( A. x  x  e.  A  <->  A. x ( x  e.  A  <->  x  e.  _V ) )
51, 4bitr4i 187 1  |-  ( A  =  _V  <->  A. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  setindel  4574  dmi  4881
  Copyright terms: Public domain W3C validator