ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqv GIF version

Theorem eqv 3434
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2164 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 2733 . . . 4 𝑥 ∈ V
32tbt 246 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1463 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 186 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  setindel  4522  dmi  4826
  Copyright terms: Public domain W3C validator