ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqv GIF version

Theorem eqv 3466
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2187 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 2763 . . . 4 𝑥 ∈ V
32tbt 247 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1481 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 187 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  setindel  4570  dmi  4877
  Copyright terms: Public domain W3C validator