ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqv GIF version

Theorem eqv 3428
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2159 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 2729 . . . 4 𝑥 ∈ V
32tbt 246 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1458 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 186 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341   = wceq 1343  wcel 2136  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  setindel  4515  dmi  4819
  Copyright terms: Public domain W3C validator