ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi Unicode version

Theorem dmi 4881
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi  |-  dom  _I  =  _V

Proof of Theorem dmi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3470 . 2  |-  ( dom 
_I  =  _V  <->  A. x  x  e.  dom  _I  )
2 a9ev 1711 . . . 4  |-  E. y 
y  =  x
3 vex 2766 . . . . . . 7  |-  y  e. 
_V
43ideq 4818 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
5 equcom 1720 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
64, 5bitri 184 . . . . 5  |-  ( x  _I  y  <->  y  =  x )
76exbii 1619 . . . 4  |-  ( E. y  x  _I  y  <->  E. y  y  =  x )
82, 7mpbir 146 . . 3  |-  E. y  x  _I  y
9 vex 2766 . . . 4  |-  x  e. 
_V
109eldm 4863 . . 3  |-  ( x  e.  dom  _I  <->  E. y  x  _I  y )
118, 10mpbir 146 . 2  |-  x  e. 
dom  _I
121, 11mpgbir 1467 1  |-  dom  _I  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   class class class wbr 4033    _I cid 4323   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-dm 4673
This theorem is referenced by:  dmv  4882  iprc  4934  dmresi  5001  climshft2  11471
  Copyright terms: Public domain W3C validator