ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi Unicode version

Theorem dmi 4937
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi  |-  dom  _I  =  _V

Proof of Theorem dmi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3511 . 2  |-  ( dom 
_I  =  _V  <->  A. x  x  e.  dom  _I  )
2 a9ev 1743 . . . 4  |-  E. y 
y  =  x
3 vex 2802 . . . . . . 7  |-  y  e. 
_V
43ideq 4873 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
5 equcom 1752 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
64, 5bitri 184 . . . . 5  |-  ( x  _I  y  <->  y  =  x )
76exbii 1651 . . . 4  |-  ( E. y  x  _I  y  <->  E. y  y  =  x )
82, 7mpbir 146 . . 3  |-  E. y  x  _I  y
9 vex 2802 . . . 4  |-  x  e. 
_V
109eldm 4919 . . 3  |-  ( x  e.  dom  _I  <->  E. y  x  _I  y )
118, 10mpbir 146 . 2  |-  x  e. 
dom  _I
121, 11mpgbir 1499 1  |-  dom  _I  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   class class class wbr 4082    _I cid 4378   dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-dm 4728
This theorem is referenced by:  dmv  4938  iprc  4992  dmresi  5059  climshft2  11812
  Copyright terms: Public domain W3C validator