ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi Unicode version

Theorem dmi 4860
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi  |-  dom  _I  =  _V

Proof of Theorem dmi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3457 . 2  |-  ( dom 
_I  =  _V  <->  A. x  x  e.  dom  _I  )
2 a9ev 1708 . . . 4  |-  E. y 
y  =  x
3 vex 2755 . . . . . . 7  |-  y  e. 
_V
43ideq 4797 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
5 equcom 1717 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
64, 5bitri 184 . . . . 5  |-  ( x  _I  y  <->  y  =  x )
76exbii 1616 . . . 4  |-  ( E. y  x  _I  y  <->  E. y  y  =  x )
82, 7mpbir 146 . . 3  |-  E. y  x  _I  y
9 vex 2755 . . . 4  |-  x  e. 
_V
109eldm 4842 . . 3  |-  ( x  e.  dom  _I  <->  E. y  x  _I  y )
118, 10mpbir 146 . 2  |-  x  e. 
dom  _I
121, 11mpgbir 1464 1  |-  dom  _I  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1503    e. wcel 2160   _Vcvv 2752   class class class wbr 4018    _I cid 4306   dom cdm 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-dm 4654
This theorem is referenced by:  dmv  4861  iprc  4913  dmresi  4980  climshft2  11346
  Copyright terms: Public domain W3C validator