ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi Unicode version

Theorem dmi 4902
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi  |-  dom  _I  =  _V

Proof of Theorem dmi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3484 . 2  |-  ( dom 
_I  =  _V  <->  A. x  x  e.  dom  _I  )
2 a9ev 1721 . . . 4  |-  E. y 
y  =  x
3 vex 2776 . . . . . . 7  |-  y  e. 
_V
43ideq 4838 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
5 equcom 1730 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
64, 5bitri 184 . . . . 5  |-  ( x  _I  y  <->  y  =  x )
76exbii 1629 . . . 4  |-  ( E. y  x  _I  y  <->  E. y  y  =  x )
82, 7mpbir 146 . . 3  |-  E. y  x  _I  y
9 vex 2776 . . . 4  |-  x  e. 
_V
109eldm 4884 . . 3  |-  ( x  e.  dom  _I  <->  E. y  x  _I  y )
118, 10mpbir 146 . 2  |-  x  e. 
dom  _I
121, 11mpgbir 1477 1  |-  dom  _I  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773   class class class wbr 4051    _I cid 4343   dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-dm 4693
This theorem is referenced by:  dmv  4903  iprc  4956  dmresi  5023  climshft2  11692
  Copyright terms: Public domain W3C validator