ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi Unicode version

Theorem dmi 4826
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi  |-  dom  _I  =  _V

Proof of Theorem dmi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3434 . 2  |-  ( dom 
_I  =  _V  <->  A. x  x  e.  dom  _I  )
2 a9ev 1690 . . . 4  |-  E. y 
y  =  x
3 vex 2733 . . . . . . 7  |-  y  e. 
_V
43ideq 4763 . . . . . 6  |-  ( x  _I  y  <->  x  =  y )
5 equcom 1699 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
64, 5bitri 183 . . . . 5  |-  ( x  _I  y  <->  y  =  x )
76exbii 1598 . . . 4  |-  ( E. y  x  _I  y  <->  E. y  y  =  x )
82, 7mpbir 145 . . 3  |-  E. y  x  _I  y
9 vex 2733 . . . 4  |-  x  e. 
_V
109eldm 4808 . . 3  |-  ( x  e.  dom  _I  <->  E. y  x  _I  y )
118, 10mpbir 145 . 2  |-  x  e. 
dom  _I
121, 11mpgbir 1446 1  |-  dom  _I  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   class class class wbr 3989    _I cid 4273   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-dm 4621
This theorem is referenced by:  dmv  4827  iprc  4879  dmresi  4946  climshft2  11269
  Copyright terms: Public domain W3C validator