ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq Unicode version

Theorem dfcleq 2164
Description: The same as df-cleq 2163 with the hypothesis removed using the Axiom of Extensionality ax-ext 2152. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfcleq
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2152 . 2  |-  ( A. x ( x  e.  y  <->  x  e.  z
)  ->  y  =  z )
21df-cleq 2163 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-ext 2152
This theorem depends on definitions:  df-cleq 2163
This theorem is referenced by:  cvjust  2165  eqriv  2167  eqrdv  2168  eqcom  2172  eqeq1  2177  eleq2  2234  cleqh  2270  abbi  2284  nfeq  2320  nfeqd  2327  cleqf  2337  eqss  3162  ddifstab  3259  ssequn1  3297  eqv  3434  disj3  3467  undif4  3477  vnex  4120  inex1  4123  zfpair2  4195  sucel  4395  uniex2  4421  bj-vprc  13931  bdinex1  13934  bj-zfpair2  13945  bj-uniex2  13951
  Copyright terms: Public domain W3C validator