ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcleq Unicode version

Theorem dfcleq 2223
Description: The same as df-cleq 2222 with the hypothesis removed using the Axiom of Extensionality ax-ext 2211. (Contributed by NM, 15-Sep-1993.)
Assertion
Ref Expression
dfcleq  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dfcleq
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ext 2211 . 2  |-  ( A. x ( x  e.  y  <->  x  e.  z
)  ->  y  =  z )
21df-cleq 2222 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200
This theorem was proved from axioms:  ax-ext 2211
This theorem depends on definitions:  df-cleq 2222
This theorem is referenced by:  cvjust  2224  eqriv  2226  eqrdv  2227  eqcom  2231  eqeq1  2236  eleq2  2293  cleqh  2329  abbi  2343  nfeq  2380  nfeqd  2387  cleqf  2397  eqss  3239  ddifstab  3336  ssequn1  3374  eqv  3511  disj3  3544  undif4  3554  vnex  4215  inex1  4218  zfpair2  4294  sucel  4501  uniex2  4527  bj-vprc  16259  bdinex1  16262  bj-zfpair2  16273  bj-uniex2  16279
  Copyright terms: Public domain W3C validator