ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setindel Unicode version

Theorem setindel 4531
Description:  e.-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
Assertion
Ref Expression
setindel  |-  ( A. x ( A. y
( y  e.  x  ->  y  e.  S )  ->  x  e.  S
)  ->  S  =  _V )
Distinct variable group:    x, y, S

Proof of Theorem setindel
StepHypRef Expression
1 clelsb1 2280 . . . . . . 7  |-  ( [ y  /  x ]
x  e.  S  <->  y  e.  S )
21ralbii 2481 . . . . . 6  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  S  <->  A. y  e.  x  y  e.  S )
3 df-ral 2458 . . . . . 6  |-  ( A. y  e.  x  y  e.  S  <->  A. y ( y  e.  x  ->  y  e.  S ) )
42, 3bitri 184 . . . . 5  |-  ( A. y  e.  x  [
y  /  x ]
x  e.  S  <->  A. y
( y  e.  x  ->  y  e.  S ) )
54imbi1i 238 . . . 4  |-  ( ( A. y  e.  x  [ y  /  x ] x  e.  S  ->  x  e.  S )  <-> 
( A. y ( y  e.  x  -> 
y  e.  S )  ->  x  e.  S
) )
65albii 1468 . . 3  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  S  ->  x  e.  S )  <->  A. x
( A. y ( y  e.  x  -> 
y  e.  S )  ->  x  e.  S
) )
7 ax-setind 4530 . . 3  |-  ( A. x ( A. y  e.  x  [ y  /  x ] x  e.  S  ->  x  e.  S )  ->  A. x  x  e.  S )
86, 7sylbir 135 . 2  |-  ( A. x ( A. y
( y  e.  x  ->  y  e.  S )  ->  x  e.  S
)  ->  A. x  x  e.  S )
9 eqv 3440 . 2  |-  ( S  =  _V  <->  A. x  x  e.  S )
108, 9sylibr 134 1  |-  ( A. x ( A. y
( y  e.  x  ->  y  e.  S )  ->  x  e.  S
)  ->  S  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353   [wsb 1760    e. wcel 2146   A.wral 2453   _Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-ral 2458  df-v 2737
This theorem is referenced by:  setind  4532
  Copyright terms: Public domain W3C validator