Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setindel | Unicode version |
Description: -Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
Ref | Expression |
---|---|
setindel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb1 2280 | . . . . . . 7 | |
2 | 1 | ralbii 2481 | . . . . . 6 |
3 | df-ral 2458 | . . . . . 6 | |
4 | 2, 3 | bitri 184 | . . . . 5 |
5 | 4 | imbi1i 238 | . . . 4 |
6 | 5 | albii 1468 | . . 3 |
7 | ax-setind 4530 | . . 3 | |
8 | 6, 7 | sylbir 135 | . 2 |
9 | eqv 3440 | . 2 | |
10 | 8, 9 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wceq 1353 wsb 1760 wcel 2146 wral 2453 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-ral 2458 df-v 2737 |
This theorem is referenced by: setind 4532 |
Copyright terms: Public domain | W3C validator |