ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvincf Unicode version

Theorem eqvincf 2905
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
eqvincf.1  |-  F/_ x A
eqvincf.2  |-  F/_ x B
eqvincf.3  |-  A  e. 
_V
Assertion
Ref Expression
eqvincf  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )

Proof of Theorem eqvincf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqvincf.3 . . 3  |-  A  e. 
_V
21eqvinc 2903 . 2  |-  ( A  =  B  <->  E. y
( y  =  A  /\  y  =  B ) )
3 eqvincf.1 . . . . 5  |-  F/_ x A
43nfeq2 2362 . . . 4  |-  F/ x  y  =  A
5 eqvincf.2 . . . . 5  |-  F/_ x B
65nfeq2 2362 . . . 4  |-  F/ x  y  =  B
74, 6nfan 1589 . . 3  |-  F/ x
( y  =  A  /\  y  =  B )
8 nfv 1552 . . 3  |-  F/ y ( x  =  A  /\  x  =  B )
9 eqeq1 2214 . . . 4  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
10 eqeq1 2214 . . . 4  |-  ( y  =  x  ->  (
y  =  B  <->  x  =  B ) )
119, 10anbi12d 473 . . 3  |-  ( y  =  x  ->  (
( y  =  A  /\  y  =  B )  <->  ( x  =  A  /\  x  =  B ) ) )
127, 8, 11cbvex 1780 . 2  |-  ( E. y ( y  =  A  /\  y  =  B )  <->  E. x
( x  =  A  /\  x  =  B ) )
132, 12bitri 184 1  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   F/_wnfc 2337   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator