Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqvincf | Unicode version |
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
eqvincf.1 | |
eqvincf.2 | |
eqvincf.3 |
Ref | Expression |
---|---|
eqvincf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvincf.3 | . . 3 | |
2 | 1 | eqvinc 2849 | . 2 |
3 | eqvincf.1 | . . . . 5 | |
4 | 3 | nfeq2 2320 | . . . 4 |
5 | eqvincf.2 | . . . . 5 | |
6 | 5 | nfeq2 2320 | . . . 4 |
7 | 4, 6 | nfan 1553 | . . 3 |
8 | nfv 1516 | . . 3 | |
9 | eqeq1 2172 | . . . 4 | |
10 | eqeq1 2172 | . . . 4 | |
11 | 9, 10 | anbi12d 465 | . . 3 |
12 | 7, 8, 11 | cbvex 1744 | . 2 |
13 | 2, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wnfc 2295 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |