| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 |
|
| Ref | Expression |
|---|---|
| nfeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. 2
| |
| 2 | nfeq2.1 |
. 2
| |
| 3 | 1, 2 | nfeq 2380 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: issetf 2807 eqvincf 2928 csbhypf 3163 nfpr 3716 intab 3952 nfmpt 4176 cbvmptf 4178 cbvmpt 4179 repizf2 4246 moop2 4338 eusvnf 4544 elrnmpt1 4975 iotaexab 5297 fmptco 5801 elabrex 5881 elabrexg 5882 nfmpo 6073 cbvmpox 6082 ovmpodxf 6130 fmpox 6346 f1od2 6381 nfrecs 6453 erovlem 6774 xpf1o 7005 mapxpen 7009 mkvprop 7325 cc3 7454 lble 9094 nfsum1 11867 nfsum 11868 zsumdc 11895 fsum3 11898 fsum3cvg2 11905 fsum2dlemstep 11945 mertenslem2 12047 nfcprod1 12065 nfcprod 12066 zproddc 12090 fprod2dlemstep 12133 ctiunctlemfo 13010 ellimc3apf 15334 |
| Copyright terms: Public domain | W3C validator |