![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfeq2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfeq2.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfeq 2344 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: issetf 2767 eqvincf 2886 csbhypf 3120 nfpr 3669 intab 3900 nfmpt 4122 cbvmptf 4124 cbvmpt 4125 repizf2 4192 moop2 4281 eusvnf 4485 elrnmpt1 4914 iotaexab 5234 fmptco 5725 elabrex 5801 elabrexg 5802 nfmpo 5988 cbvmpox 5997 ovmpodxf 6045 fmpox 6255 f1od2 6290 nfrecs 6362 erovlem 6683 xpf1o 6902 mapxpen 6906 mkvprop 7219 cc3 7330 lble 8968 nfsum1 11502 nfsum 11503 zsumdc 11530 fsum3 11533 fsum3cvg2 11540 fsum2dlemstep 11580 mertenslem2 11682 nfcprod1 11700 nfcprod 11701 zproddc 11725 fprod2dlemstep 11768 ctiunctlemfo 12599 ellimc3apf 14839 |
Copyright terms: Public domain | W3C validator |