| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 |
|
| Ref | Expression |
|---|---|
| nfeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfeq2.1 |
. 2
| |
| 3 | 1, 2 | nfeq 2356 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: issetf 2779 eqvincf 2898 csbhypf 3132 nfpr 3683 intab 3914 nfmpt 4136 cbvmptf 4138 cbvmpt 4139 repizf2 4206 moop2 4296 eusvnf 4500 elrnmpt1 4929 iotaexab 5250 fmptco 5746 elabrex 5826 elabrexg 5827 nfmpo 6014 cbvmpox 6023 ovmpodxf 6071 fmpox 6286 f1od2 6321 nfrecs 6393 erovlem 6714 xpf1o 6941 mapxpen 6945 mkvprop 7260 cc3 7380 lble 9020 nfsum1 11667 nfsum 11668 zsumdc 11695 fsum3 11698 fsum3cvg2 11705 fsum2dlemstep 11745 mertenslem2 11847 nfcprod1 11865 nfcprod 11866 zproddc 11890 fprod2dlemstep 11933 ctiunctlemfo 12810 ellimc3apf 15132 |
| Copyright terms: Public domain | W3C validator |