![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfeq2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfeq2.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfeq 2236 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-cleq 2081 df-clel 2084 df-nfc 2217 |
This theorem is referenced by: issetf 2626 eqvincf 2742 csbhypf 2966 nfpr 3492 intab 3717 nfmpt 3930 cbvmptf 3932 cbvmpt 3933 repizf2 3997 moop2 4078 eusvnf 4275 elrnmpt1 4686 fmptco 5464 elabrex 5537 nfmpt2 5717 cbvmpt2x 5726 ovmpt2dxf 5770 fmpt2x 5970 f1od2 6000 nfrecs 6072 erovlem 6384 xpf1o 6560 mapxpen 6564 lble 8408 nfsum1 10745 nfsum 10746 zisum 10774 fisum 10778 fisumcvg2 10786 fsum3cvg2 10787 fsum2dlemstep 10828 mertenslem2 10930 |
Copyright terms: Public domain | W3C validator |