ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 Unicode version

Theorem nfeq2 2351
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1  |-  F/_ x B
Assertion
Ref Expression
nfeq2  |-  F/ x  A  =  B
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfeq2.1 . 2  |-  F/_ x B
31, 2nfeq 2347 1  |-  F/ x  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364   F/wnf 1474   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  issetf  2770  eqvincf  2889  csbhypf  3123  nfpr  3673  intab  3904  nfmpt  4126  cbvmptf  4128  cbvmpt  4129  repizf2  4196  moop2  4285  eusvnf  4489  elrnmpt1  4918  iotaexab  5238  fmptco  5731  elabrex  5807  elabrexg  5808  nfmpo  5995  cbvmpox  6004  ovmpodxf  6052  fmpox  6267  f1od2  6302  nfrecs  6374  erovlem  6695  xpf1o  6914  mapxpen  6918  mkvprop  7233  cc3  7351  lble  8991  nfsum1  11538  nfsum  11539  zsumdc  11566  fsum3  11569  fsum3cvg2  11576  fsum2dlemstep  11616  mertenslem2  11718  nfcprod1  11736  nfcprod  11737  zproddc  11761  fprod2dlemstep  11804  ctiunctlemfo  12681  ellimc3apf  14980
  Copyright terms: Public domain W3C validator