| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 |
|
| Ref | Expression |
|---|---|
| nfeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfeq2.1 |
. 2
| |
| 3 | 1, 2 | nfeq 2358 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: issetf 2784 eqvincf 2905 csbhypf 3140 nfpr 3693 intab 3928 nfmpt 4152 cbvmptf 4154 cbvmpt 4155 repizf2 4222 moop2 4314 eusvnf 4518 elrnmpt1 4948 iotaexab 5269 fmptco 5769 elabrex 5849 elabrexg 5850 nfmpo 6037 cbvmpox 6046 ovmpodxf 6094 fmpox 6309 f1od2 6344 nfrecs 6416 erovlem 6737 xpf1o 6966 mapxpen 6970 mkvprop 7286 cc3 7415 lble 9055 nfsum1 11782 nfsum 11783 zsumdc 11810 fsum3 11813 fsum3cvg2 11820 fsum2dlemstep 11860 mertenslem2 11962 nfcprod1 11980 nfcprod 11981 zproddc 12005 fprod2dlemstep 12048 ctiunctlemfo 12925 ellimc3apf 15247 |
| Copyright terms: Public domain | W3C validator |