| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq2 | Unicode version | ||
| Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 |
|
| Ref | Expression |
|---|---|
| nfeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfeq2.1 |
. 2
| |
| 3 | 1, 2 | nfeq 2356 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: issetf 2779 eqvincf 2898 csbhypf 3132 nfpr 3683 intab 3914 nfmpt 4137 cbvmptf 4139 cbvmpt 4140 repizf2 4207 moop2 4297 eusvnf 4501 elrnmpt1 4930 iotaexab 5251 fmptco 5748 elabrex 5828 elabrexg 5829 nfmpo 6016 cbvmpox 6025 ovmpodxf 6073 fmpox 6288 f1od2 6323 nfrecs 6395 erovlem 6716 xpf1o 6943 mapxpen 6947 mkvprop 7262 cc3 7382 lble 9022 nfsum1 11700 nfsum 11701 zsumdc 11728 fsum3 11731 fsum3cvg2 11738 fsum2dlemstep 11778 mertenslem2 11880 nfcprod1 11898 nfcprod 11899 zproddc 11923 fprod2dlemstep 11966 ctiunctlemfo 12843 ellimc3apf 15165 |
| Copyright terms: Public domain | W3C validator |