ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq2 Unicode version

Theorem nfeq2 2360
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1  |-  F/_ x B
Assertion
Ref Expression
nfeq2  |-  F/ x  A  =  B
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem nfeq2
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x A
2 nfeq2.1 . 2  |-  F/_ x B
31, 2nfeq 2356 1  |-  F/ x  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1373   F/wnf 1483   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  issetf  2779  eqvincf  2898  csbhypf  3132  nfpr  3683  intab  3914  nfmpt  4136  cbvmptf  4138  cbvmpt  4139  repizf2  4206  moop2  4296  eusvnf  4500  elrnmpt1  4929  iotaexab  5250  fmptco  5746  elabrex  5826  elabrexg  5827  nfmpo  6014  cbvmpox  6023  ovmpodxf  6071  fmpox  6286  f1od2  6321  nfrecs  6393  erovlem  6714  xpf1o  6941  mapxpen  6945  mkvprop  7260  cc3  7380  lble  9020  nfsum1  11667  nfsum  11668  zsumdc  11695  fsum3  11698  fsum3cvg2  11705  fsum2dlemstep  11745  mertenslem2  11847  nfcprod1  11865  nfcprod  11866  zproddc  11890  fprod2dlemstep  11933  ctiunctlemfo  12810  ellimc3apf  15132
  Copyright terms: Public domain W3C validator