Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqvinc | Unicode version |
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
eqvinc.1 |
Ref | Expression |
---|---|
eqvinc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinc.1 | . . . . 5 | |
2 | 1 | isseti 2720 | . . . 4 |
3 | ax-1 6 | . . . . . 6 | |
4 | eqtr 2175 | . . . . . . 7 | |
5 | 4 | ex 114 | . . . . . 6 |
6 | 3, 5 | jca 304 | . . . . 5 |
7 | 6 | eximi 1580 | . . . 4 |
8 | pm3.43 592 | . . . . 5 | |
9 | 8 | eximi 1580 | . . . 4 |
10 | 2, 7, 9 | mp2b 8 | . . 3 |
11 | 10 | 19.37aiv 1655 | . 2 |
12 | eqtr2 2176 | . . 3 | |
13 | 12 | exlimiv 1578 | . 2 |
14 | 11, 13 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: eqvincf 2837 |
Copyright terms: Public domain | W3C validator |