| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqvincg | Unicode version | ||
| Description: A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.) | 
| Ref | Expression | 
|---|---|
| eqvincg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | 
. . . 4
 | |
| 2 | ax-1 6 | 
. . . . . 6
 | |
| 3 | eqtr 2214 | 
. . . . . . 7
 | |
| 4 | 3 | ex 115 | 
. . . . . 6
 | 
| 5 | 2, 4 | jca 306 | 
. . . . 5
 | 
| 6 | 5 | eximi 1614 | 
. . . 4
 | 
| 7 | pm3.43 602 | 
. . . . 5
 | |
| 8 | 7 | eximi 1614 | 
. . . 4
 | 
| 9 | 1, 6, 8 | 3syl 17 | 
. . 3
 | 
| 10 | nfv 1542 | 
. . . 4
 | |
| 11 | 10 | 19.37-1 1688 | 
. . 3
 | 
| 12 | 9, 11 | syl 14 | 
. 2
 | 
| 13 | eqtr2 2215 | 
. . 3
 | |
| 14 | 13 | exlimiv 1612 | 
. 2
 | 
| 15 | 12, 14 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: dff13 5815 f1eqcocnv 5838 | 
| Copyright terms: Public domain | W3C validator |