| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvincg | Unicode version | ||
| Description: A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
| Ref | Expression |
|---|---|
| eqvincg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2777 |
. . . 4
| |
| 2 | ax-1 6 |
. . . . . 6
| |
| 3 | eqtr 2214 |
. . . . . . 7
| |
| 4 | 3 | ex 115 |
. . . . . 6
|
| 5 | 2, 4 | jca 306 |
. . . . 5
|
| 6 | 5 | eximi 1614 |
. . . 4
|
| 7 | pm3.43 602 |
. . . . 5
| |
| 8 | 7 | eximi 1614 |
. . . 4
|
| 9 | 1, 6, 8 | 3syl 17 |
. . 3
|
| 10 | nfv 1542 |
. . . 4
| |
| 11 | 10 | 19.37-1 1688 |
. . 3
|
| 12 | 9, 11 | syl 14 |
. 2
|
| 13 | eqtr2 2215 |
. . 3
| |
| 14 | 13 | exlimiv 1612 |
. 2
|
| 15 | 12, 14 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: dff13 5818 f1eqcocnv 5841 |
| Copyright terms: Public domain | W3C validator |