| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvincf | GIF version | ||
| Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| eqvincf.1 | ⊢ Ⅎ𝑥𝐴 |
| eqvincf.2 | ⊢ Ⅎ𝑥𝐵 |
| eqvincf.3 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqvincf | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvincf.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | eqvinc 2926 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 3 | eqvincf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfeq2 2384 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 5 | eqvincf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfeq2 2384 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
| 7 | 4, 6 | nfan 1611 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) |
| 8 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) | |
| 9 | eqeq1 2236 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
| 10 | eqeq1 2236 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐵 ↔ 𝑥 = 𝐵)) | |
| 11 | 9, 10 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 12 | 7, 8, 11 | cbvex 1802 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 13 | 2, 12 | bitri 184 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Ⅎwnfc 2359 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |