![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqvincf | GIF version |
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
eqvincf.1 | ⊢ Ⅎ𝑥𝐴 |
eqvincf.2 | ⊢ Ⅎ𝑥𝐵 |
eqvincf.3 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqvincf | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvincf.3 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | eqvinc 2861 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵)) |
3 | eqvincf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfeq2 2331 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
5 | eqvincf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfeq2 2331 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
7 | 4, 6 | nfan 1565 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) |
8 | nfv 1528 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) | |
9 | eqeq1 2184 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
10 | eqeq1 2184 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐵 ↔ 𝑥 = 𝐵)) | |
11 | 9, 10 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
12 | 7, 8, 11 | cbvex 1756 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
13 | 2, 12 | bitri 184 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Ⅎwnfc 2306 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |