| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqvincf | GIF version | ||
| Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| eqvincf.1 | ⊢ Ⅎ𝑥𝐴 | 
| eqvincf.2 | ⊢ Ⅎ𝑥𝐵 | 
| eqvincf.3 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| eqvincf | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqvincf.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | eqvinc 2887 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵)) | 
| 3 | eqvincf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfeq2 2351 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | 
| 5 | eqvincf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfeq2 2351 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 | 
| 7 | 4, 6 | nfan 1579 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) | 
| 8 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) | |
| 9 | eqeq1 2203 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
| 10 | eqeq1 2203 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐵 ↔ 𝑥 = 𝐵)) | |
| 11 | 9, 10 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | 
| 12 | 7, 8, 11 | cbvex 1770 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| 13 | 2, 12 | bitri 184 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |