Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqvincf | GIF version |
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
eqvincf.1 | ⊢ Ⅎ𝑥𝐴 |
eqvincf.2 | ⊢ Ⅎ𝑥𝐵 |
eqvincf.3 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqvincf | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvincf.3 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | eqvinc 2853 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵)) |
3 | eqvincf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfeq2 2324 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
5 | eqvincf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfeq2 2324 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
7 | 4, 6 | nfan 1558 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) |
8 | nfv 1521 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) | |
9 | eqeq1 2177 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
10 | eqeq1 2177 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐵 ↔ 𝑥 = 𝐵)) | |
11 | 9, 10 | anbi12d 470 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
12 | 7, 8, 11 | cbvex 1749 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
13 | 2, 12 | bitri 183 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Ⅎwnfc 2299 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |