ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erssxp Unicode version

Theorem erssxp 6610
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erssxp  |-  ( R  Er  A  ->  R  C_  ( A  X.  A
) )

Proof of Theorem erssxp
StepHypRef Expression
1 errel 6596 . . 3  |-  ( R  Er  A  ->  Rel  R )
2 relssdmrn 5186 . . 3  |-  ( Rel 
R  ->  R  C_  ( dom  R  X.  ran  R
) )
31, 2syl 14 . 2  |-  ( R  Er  A  ->  R  C_  ( dom  R  X.  ran  R ) )
4 erdm 6597 . . 3  |-  ( R  Er  A  ->  dom  R  =  A )
5 errn 6609 . . 3  |-  ( R  Er  A  ->  ran  R  =  A )
64, 5xpeq12d 4684 . 2  |-  ( R  Er  A  ->  ( dom  R  X.  ran  R
)  =  ( A  X.  A ) )
73, 6sseqtrd 3217 1  |-  ( R  Er  A  ->  R  C_  ( A  X.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3153    X. cxp 4657   dom cdm 4659   ran crn 4660   Rel wrel 4664    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-er 6587
This theorem is referenced by:  erex  6611  riinerm  6662
  Copyright terms: Public domain W3C validator